scholarly journals Towards Consistent Variational Auto-Encoding (Student Abstract)

2020 ◽  
Vol 34 (10) ◽  
pp. 13869-13870
Author(s):  
Yijing Liu ◽  
Shuyu Lin ◽  
Ronald Clark

Variational autoencoders (VAEs) have been a successful approach to learning meaningful representations of data in an unsupervised manner. However, suboptimal representations are often learned because the approximate inference model fails to match the true posterior of the generative model, i.e. an inconsistency exists between the learnt inference and generative models. In this paper, we introduce a novel consistency loss that directly requires the encoding of the reconstructed data point to match the encoding of the original data, leading to better representations. Through experiments on MNIST and Fashion MNIST, we demonstrate the existence of the inconsistency in VAE learning and that our method can effectively reduce such inconsistency.

2021 ◽  
pp. 000370282098784
Author(s):  
James Renwick Beattie ◽  
Francis Esmonde-White

Spectroscopy rapidly captures a large amount of data that is not directly interpretable. Principal Components Analysis (PCA) is widely used to simplify complex spectral datasets into comprehensible information by identifying recurring patterns in the data with minimal loss of information. The linear algebra underpinning PCA is not well understood by many applied analytical scientists and spectroscopists who use PCA. The meaning of features identified through PCA are often unclear. This manuscript traces the journey of the spectra themselves through the operations behind PCA, with each step illustrated by simulated spectra. PCA relies solely on the information within the spectra, consequently the mathematical model is dependent on the nature of the data itself. The direct links between model and spectra allow concrete spectroscopic explanation of PCA, such the scores representing ‘concentration’ or ‘weights’. The principal components (loadings) are by definition hidden, repeated and uncorrelated spectral shapes that linearly combine to generate the observed spectra. They can be visualized as subtraction spectra between extreme differences within the dataset. Each PC is shown to be a successive refinement of the estimated spectra, improving the fit between PC reconstructed data and the original data. Understanding the data-led development of a PCA model shows how to interpret application specific chemical meaning of the PCA loadings and how to analyze scores. A critical benefit of PCA is its simplicity and the succinctness of its description of a dataset, making it powerful and flexible.


Author(s):  
Masoumeh Zareapoor ◽  
Jie Yang

Image-to-Image translation aims to learn an image from a source domain to a target domain. However, there are three main challenges, such as lack of paired datasets, multimodality, and diversity, that are associated with these problems and need to be dealt with. Convolutional neural networks (CNNs), despite of having great performance in many computer vision tasks, they fail to detect the hierarchy of spatial relationships between different parts of an object and thus do not form the ideal representative model we look for. This article presents a new variation of generative models that aims to remedy this problem. We use a trainable transformer, which explicitly allows the spatial manipulation of data within training. This differentiable module can be augmented into the convolutional layers in the generative model, and it allows to freely alter the generated distributions for image-to-image translation. To reap the benefits of proposed module into generative model, our architecture incorporates a new loss function to facilitate an effective end-to-end generative learning for image-to-image translation. The proposed model is evaluated through comprehensive experiments on image synthesizing and image-to-image translation, along with comparisons with several state-of-the-art algorithms.


The improvement of an information processing and Memory capacity, the vast amount of data is collected for various data analyses purposes. Data mining techniques are used to get knowledgeable information. The process of extraction of data by using data mining techniques the data get discovered publically and this leads to breaches of specific privacy data. Privacypreserving data mining is used to provide to protection of sensitive information from unwanted or unsanctioned disclosure. In this paper, we analysis the problem of discovering similarity checks for functional dependencies from a given dataset such that application of algorithm (l, d) inference with generalization can anonymised the micro data without loss in utility. [8] This work has presented Functional dependency based perturbation approach which hides sensitive information from the user, by applying (l, d) inference model on the dependency attributes based on Information Gain. This approach works on both categorical and numerical attributes. The perturbed data set does not affects the original dataset it maintains the same or very comparable patterns as the original data set. Hence the utility of the application is always high, when compared to other data mining techniques. The accuracy of the original and perturbed datasets is compared and analysed using tools, data mining classification algorithm.


2019 ◽  
Vol 2019 (4) ◽  
pp. 232-249 ◽  
Author(s):  
Benjamin Hilprecht ◽  
Martin Härterich ◽  
Daniel Bernau

Abstract We present two information leakage attacks that outperform previous work on membership inference against generative models. The first attack allows membership inference without assumptions on the type of the generative model. Contrary to previous evaluation metrics for generative models, like Kernel Density Estimation, it only considers samples of the model which are close to training data records. The second attack specifically targets Variational Autoencoders, achieving high membership inference accuracy. Furthermore, previous work mostly considers membership inference adversaries who perform single record membership inference. We argue for considering regulatory actors who perform set membership inference to identify the use of specific datasets for training. The attacks are evaluated on two generative model architectures, Generative Adversarial Networks (GANs) and Variational Autoen-coders (VAEs), trained on standard image datasets. Our results show that the two attacks yield success rates superior to previous work on most data sets while at the same time having only very mild assumptions. We envision the two attacks in combination with the membership inference attack type formalization as especially useful. For example, to enforce data privacy standards and automatically assessing model quality in machine learning as a service setups. In practice, our work motivates the use of GANs since they prove less vulnerable against information leakage attacks while producing detailed samples.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Stefan Lenz ◽  
Moritz Hess ◽  
Harald Binder

Abstract Background The best way to calculate statistics from medical data is to use the data of individual patients. In some settings, this data is difficult to obtain due to privacy restrictions. In Germany, for example, it is not possible to pool routine data from different hospitals for research purposes without the consent of the patients. Methods The DataSHIELD software provides an infrastructure and a set of statistical methods for joint, privacy-preserving analyses of distributed data. The contained algorithms are reformulated to work with aggregated data from the participating sites instead of the individual data. If a desired algorithm is not implemented in DataSHIELD or cannot be reformulated in such a way, using artificial data is an alternative. Generating artificial data is possible using so-called generative models, which are able to capture the distribution of given data. Here, we employ deep Boltzmann machines (DBMs) as generative models. For the implementation, we use the package “BoltzmannMachines” from the Julia programming language and wrap it for use with DataSHIELD, which is based on R. Results We present a methodology together with a software implementation that builds on DataSHIELD to create artificial data that preserve complex patterns from distributed individual patient data. Such data sets of artificial patients, which are not linked to real patients, can then be used for joint analyses. As an exemplary application, we conduct a distributed analysis with DBMs on a synthetic data set, which simulates genetic variant data. Patterns from the original data can be recovered in the artificial data using hierarchical clustering of the virtual patients, demonstrating the feasibility of the approach. Additionally, we compare DBMs, variational autoencoders, generative adversarial networks, and multivariate imputation as generative approaches by assessing the utility and disclosure of synthetic data generated from real genetic variant data in a distributed setting with data of a small sample size. Conclusions Our implementation adds to DataSHIELD the ability to generate artificial data that can be used for various analyses, e.g., for pattern recognition with deep learning. This also demonstrates more generally how DataSHIELD can be flexibly extended with advanced algorithms from languages other than R.


2020 ◽  
Vol 34 (04) ◽  
pp. 3397-3404 ◽  
Author(s):  
Oishik Chatterjee ◽  
Ganesh Ramakrishnan ◽  
Sunita Sarawagi

Scarcity of labeled data is a bottleneck for supervised learning models. A paradigm that has evolved for dealing with this problem is data programming. An existing data programming paradigm allows human supervision to be provided as a set of discrete labeling functions (LF) that output possibly noisy labels to input instances and a generative model for consolidating the weak labels. We enhance and generalize this paradigm by supporting functions that output a continuous score (instead of a hard label) that noisily correlates with labels. We show across five applications that continuous LFs are more natural to program and lead to improved recall. We also show that accuracy of existing generative models is unstable with respect to initialization, training epochs, and learning rates. We give control to the data programmer to guide the training process by providing intuitive quality guides with each LF. We propose an elegant method of incorporating these guides into the generative model. Our overall method, called CAGE, makes the data programming paradigm more reliable than other tricks based on initialization, sign-penalties, or soft-accuracy constraints.


2021 ◽  
Vol 118 (16) ◽  
pp. e2020324118
Author(s):  
Biwei Dai ◽  
Uroš Seljak

The goal of generative models is to learn the intricate relations between the data to create new simulated data, but current approaches fail in very high dimensions. When the true data-generating process is based on physical processes, these impose symmetries and constraints, and the generative model can be created by learning an effective description of the underlying physics, which enables scaling of the generative model to very high dimensions. In this work, we propose Lagrangian deep learning (LDL) for this purpose, applying it to learn outputs of cosmological hydrodynamical simulations. The model uses layers of Lagrangian displacements of particles describing the observables to learn the effective physical laws. The displacements are modeled as the gradient of an effective potential, which explicitly satisfies the translational and rotational invariance. The total number of learned parameters is only of order 10, and they can be viewed as effective theory parameters. We combine N-body solver fast particle mesh (FastPM) with LDL and apply it to a wide range of cosmological outputs, from the dark matter to the stellar maps, gas density, and temperature. The computational cost of LDL is nearly four orders of magnitude lower than that of the full hydrodynamical simulations, yet it outperforms them at the same resolution. We achieve this with only of order 10 layers from the initial conditions to the final output, in contrast to typical cosmological simulations with thousands of time steps. This opens up the possibility of analyzing cosmological observations entirely within this framework, without the need for large dark-matter simulations.


2018 ◽  
Author(s):  
Jan H. Jensen

This paper presents a comparison of a graph-based genetic algorithm (GB-GA) and machine learning (ML) results for the optimisation of logP values with a constraint for synthetic accessibility and shows that GA is as good or better than the ML approaches for this particular property. The molecules found by GB-GA bear little resemblance to the molecules used to construct the initial mating pool, indicating that the GB-GA approach can traverse a relatively large distance in chemical space using relatively few (50) generations. The paper also introduces a new non-ML graph-based generative model (GB-GM) that can be parameterized using very small data sets and combined with a Monte Carlo tree search (MCTS) algorithm. The results are comparable to previously published results (Sci. Technol. Adv. Mater. 2017, 18, 972-976) using a recurrent neural network (RNN) generative model, while the GB-GM-based method is orders of magnitude faster. The MCTS results seem more dependent on the composition of the training set than the GA approach for this particular property. Our results suggest that the performance of new ML-based generative models should be compared to more traditional, and often simpler, approaches such a GA.


2021 ◽  
Author(s):  
Henning Tiedemann ◽  
Yaniv Morgenstern ◽  
Filipp Schmidt ◽  
Roland W. Fleming

Humans have the striking ability to learn and generalize new visual concepts from just a single exemplar. We suggest that when presented with a novel object, observers identify its significant features and infer a generative model of its shape, allowing them to mentally synthesize plausible variants. To test this, we showed participants abstract 2D shapes ("Exemplars") and asked them to draw new objects ("Variations") belonging to the same class. We show that this procedure created genuine novel categories. In line with our hypothesis, particular features of each Exemplar were preserved in its Variations and there was striking agreement between participants about which shape features were most distinctive. Also, we show that strategies to create Variations were strongly driven by part structure: new objects typically modified individual parts (e.g., limbs) of the Exemplar, often preserving part order, sometimes altering it. Together, our findings suggest that sophisticated internal generative models are key to how humans analyze and generalize from single exemplars.


Sign in / Sign up

Export Citation Format

Share Document