scholarly journals Learning Sense Representation from Word Representation for Unsupervised Word Sense Disambiguation (Student Abstract)

2020 ◽  
Vol 34 (10) ◽  
pp. 13947-13948
Author(s):  
Jie Wang ◽  
Zhenxin Fu ◽  
Moxin Li ◽  
Haisong Zhang ◽  
Dongyan Zhao ◽  
...  

Unsupervised WSD methods do not rely on annotated training datasets and can use WordNet. Since each ambiguous word in the WSD task exists in WordNet and each sense of the word has a gloss, we propose SGM and MGM to learn sense representations for words in WordNet using the glosses. In the WSD task, we calculate the similarity between each sense of the ambiguous word and its context to select the sense with the highest similarity. We evaluate our method on several benchmark WSD datasets and achieve better performance than the state-of-the-art unsupervised WSD systems.

2015 ◽  
Author(s):  
Rodrigo Goulart ◽  
Juliano De Carvalho ◽  
Vera De Lima

Word Sense Disambiguation (WSD) is an important task for Biomedicine text-mining. Supervised WSD methods have the best results but they are complex and their cost for testing is too high. This work presents an experiment on WSD using graph-based approaches (unsupervised methods). Three algorithms were tested and compared to the state of the art. Results indicate that similar performance could be reached with different levels of complexity, what may point to a new approach to this problem.


2020 ◽  
Vol 34 (05) ◽  
pp. 8123-8130
Author(s):  
Caterina Lacerra ◽  
Michele Bevilacqua ◽  
Tommaso Pasini ◽  
Roberto Navigli

Word Sense Disambiguation (WSD) is the task of associating a word in context with one of its meanings. While many works in the past have focused on raising the state of the art, none has even come close to achieving an F-score in the 80% ballpark when using WordNet as its sense inventory. We contend that one of the main reasons for this failure is the excessively fine granularity of this inventory, resulting in senses that are hard to differentiate between, even for an experienced human annotator. In this paper we cope with this long-standing problem by introducing Coarse Sense Inventory (CSI), obtained by linking WordNet concepts to a new set of 45 labels. The results show that the coarse granularity of CSI leads a WSD model to achieve 85.9% F1, while maintaining a high expressive power. Our set of labels also exhibits ease of use in tagging and a descriptiveness that other coarse inventories lack, as demonstrated in two annotation tasks which we performed. Moreover, a few-shot evaluation proves that the class-based nature of CSI allows the model to generalise over unseen or under-represented words.


Author(s):  
Michele Bevilacqua ◽  
Tommaso Pasini ◽  
Alessandro Raganato ◽  
Roberto Navigli

Word Sense Disambiguation (WSD) aims at making explicit the semantics of a word in context by identifying the most suitable meaning from a predefined sense inventory. Recent breakthroughs in representation learning have fueled intensive WSD research, resulting in considerable performance improvements, breaching the 80% glass ceiling set by the inter-annotator agreement. In this survey, we provide an extensive overview of current advances in WSD, describing the state of the art in terms of i) resources for the task, i.e., sense inventories and reference datasets for training and testing, as well as ii) automatic disambiguation approaches, detailing their peculiarities, strengths and weaknesses. Finally, we highlight the current limitations of the task itself, but also point out recent trends that could help expand the scope and applicability of WSD, setting up new promising directions for the future.


2021 ◽  
Vol 9 (2) ◽  
pp. 996-1016
Author(s):  
Chingakham PonyKumar Singh, Et. al.

Word Sense Disambiguation is a disambiguating technique of finding the most relevant sense of an ambiguous word with the aid of its surrounding words. In this paper, we pointed out the various Word Sense Disambiguation approaches along with its different techniques, state of the art, comparative studies of the existing system highlighting its benefits and limitations across all the widely well known Indian and foreign languages. In this paper, we converse our study by emphasizing to all the studies that uses WordNet, IndoWordNet or corpus as the main data resources of the referred languages.


Author(s):  
Pushpak Bhattacharyya ◽  
Mitesh Khapra

This chapter discusses the basic concepts of Word Sense Disambiguation (WSD) and the approaches to solving this problem. Both general purpose WSD and domain specific WSD are presented. The first part of the discussion focuses on existing approaches for WSD, including knowledge-based, supervised, semi-supervised, unsupervised, hybrid, and bilingual approaches. The accuracy value for general purpose WSD as the current state of affairs seems to be pegged at around 65%. This has motivated investigations into domain specific WSD, which is the current trend in the field. In the latter part of the chapter, we present a greedy neural network inspired algorithm for domain specific WSD and compare its performance with other state-of-the-art algorithms for WSD. Our experiments suggest that for domain-specific WSD, simply selecting the most frequent sense of a word does as well as any state-of-the-art algorithm.


2017 ◽  
Vol 43 (3) ◽  
pp. 593-617 ◽  
Author(s):  
Sascha Rothe ◽  
Hinrich Schütze

We present AutoExtend, a system that combines word embeddings with semantic resources by learning embeddings for non-word objects like synsets and entities and learning word embeddings that incorporate the semantic information from the resource. The method is based on encoding and decoding the word embeddings and is flexible in that it can take any word embeddings as input and does not need an additional training corpus. The obtained embeddings live in the same vector space as the input word embeddings. A sparse tensor formalization guarantees efficiency and parallelizability. We use WordNet, GermaNet, and Freebase as semantic resources. AutoExtend achieves state-of-the-art performance on Word-in-Context Similarity and Word Sense Disambiguation tasks.


2017 ◽  
Vol 43 (1) ◽  
pp. 31-70 ◽  
Author(s):  
Rocco Tripodi ◽  
Marcello Pelillo

This article presents a new model for word sense disambiguation formulated in terms of evolutionary game theory, where each word to be disambiguated is represented as a node on a graph whose edges represent word relations and senses are represented as classes. The words simultaneously update their class membership preferences according to the senses that neighboring words are likely to choose. We use distributional information to weigh the influence that each word has on the decisions of the others and semantic similarity information to measure the strength of compatibility among the choices. With this information we can formulate the word sense disambiguation problem as a constraint satisfaction problem and solve it using tools derived from game theory, maintaining the textual coherence. The model is based on two ideas: Similar words should be assigned to similar classes and the meaning of a word does not depend on all the words in a text but just on some of them. The article provides an in-depth motivation of the idea of modeling the word sense disambiguation problem in terms of game theory, which is illustrated by an example. The conclusion presents an extensive analysis on the combination of similarity measures to use in the framework and a comparison with state-of-the-art systems. The results show that our model outperforms state-of-the-art algorithms and can be applied to different tasks and in different scenarios.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Xin Wang ◽  
Wanli Zuo ◽  
Ying Wang

Word sense disambiguation (WSD) is a fundamental problem in nature language processing, the objective of which is to identify the most proper sense for an ambiguous word in a given context. Although WSD has been researched over the years, the performance of existing algorithms in terms of accuracy and recall is still unsatisfactory. In this paper, we propose a novel approach to word sense disambiguation based on topical and semantic association. For a given document, supposing that its topic category is accurately discriminated, the correct sense of the ambiguous term is identified through the corresponding topic and semantic contexts. We firstly extract topic discriminative terms from document and construct topical graph based on topic span intervals to implement topic identification. We then exploit syntactic features, topic span features, and semantic features to disambiguate nouns and verbs in the context of ambiguous word. Finally, we conduct experiments on the standard data set SemCor to evaluate the performance of the proposed method, and the results indicate that our approach achieves relatively better performance than existing approaches.


Sign in / Sign up

Export Citation Format

Share Document