scholarly journals Recent Trends in Word Sense Disambiguation: A Survey

Author(s):  
Michele Bevilacqua ◽  
Tommaso Pasini ◽  
Alessandro Raganato ◽  
Roberto Navigli

Word Sense Disambiguation (WSD) aims at making explicit the semantics of a word in context by identifying the most suitable meaning from a predefined sense inventory. Recent breakthroughs in representation learning have fueled intensive WSD research, resulting in considerable performance improvements, breaching the 80% glass ceiling set by the inter-annotator agreement. In this survey, we provide an extensive overview of current advances in WSD, describing the state of the art in terms of i) resources for the task, i.e., sense inventories and reference datasets for training and testing, as well as ii) automatic disambiguation approaches, detailing their peculiarities, strengths and weaknesses. Finally, we highlight the current limitations of the task itself, but also point out recent trends that could help expand the scope and applicability of WSD, setting up new promising directions for the future.

2015 ◽  
Author(s):  
Rodrigo Goulart ◽  
Juliano De Carvalho ◽  
Vera De Lima

Word Sense Disambiguation (WSD) is an important task for Biomedicine text-mining. Supervised WSD methods have the best results but they are complex and their cost for testing is too high. This work presents an experiment on WSD using graph-based approaches (unsupervised methods). Three algorithms were tested and compared to the state of the art. Results indicate that similar performance could be reached with different levels of complexity, what may point to a new approach to this problem.


2020 ◽  
Vol 34 (05) ◽  
pp. 8123-8130
Author(s):  
Caterina Lacerra ◽  
Michele Bevilacqua ◽  
Tommaso Pasini ◽  
Roberto Navigli

Word Sense Disambiguation (WSD) is the task of associating a word in context with one of its meanings. While many works in the past have focused on raising the state of the art, none has even come close to achieving an F-score in the 80% ballpark when using WordNet as its sense inventory. We contend that one of the main reasons for this failure is the excessively fine granularity of this inventory, resulting in senses that are hard to differentiate between, even for an experienced human annotator. In this paper we cope with this long-standing problem by introducing Coarse Sense Inventory (CSI), obtained by linking WordNet concepts to a new set of 45 labels. The results show that the coarse granularity of CSI leads a WSD model to achieve 85.9% F1, while maintaining a high expressive power. Our set of labels also exhibits ease of use in tagging and a descriptiveness that other coarse inventories lack, as demonstrated in two annotation tasks which we performed. Moreover, a few-shot evaluation proves that the class-based nature of CSI allows the model to generalise over unseen or under-represented words.


2020 ◽  
Vol 34 (10) ◽  
pp. 13947-13948
Author(s):  
Jie Wang ◽  
Zhenxin Fu ◽  
Moxin Li ◽  
Haisong Zhang ◽  
Dongyan Zhao ◽  
...  

Unsupervised WSD methods do not rely on annotated training datasets and can use WordNet. Since each ambiguous word in the WSD task exists in WordNet and each sense of the word has a gloss, we propose SGM and MGM to learn sense representations for words in WordNet using the glosses. In the WSD task, we calculate the similarity between each sense of the ambiguous word and its context to select the sense with the highest similarity. We evaluate our method on several benchmark WSD datasets and achieve better performance than the state-of-the-art unsupervised WSD systems.


Author(s):  
Pushpak Bhattacharyya ◽  
Mitesh Khapra

This chapter discusses the basic concepts of Word Sense Disambiguation (WSD) and the approaches to solving this problem. Both general purpose WSD and domain specific WSD are presented. The first part of the discussion focuses on existing approaches for WSD, including knowledge-based, supervised, semi-supervised, unsupervised, hybrid, and bilingual approaches. The accuracy value for general purpose WSD as the current state of affairs seems to be pegged at around 65%. This has motivated investigations into domain specific WSD, which is the current trend in the field. In the latter part of the chapter, we present a greedy neural network inspired algorithm for domain specific WSD and compare its performance with other state-of-the-art algorithms for WSD. Our experiments suggest that for domain-specific WSD, simply selecting the most frequent sense of a word does as well as any state-of-the-art algorithm.


2017 ◽  
Vol 43 (3) ◽  
pp. 593-617 ◽  
Author(s):  
Sascha Rothe ◽  
Hinrich Schütze

We present AutoExtend, a system that combines word embeddings with semantic resources by learning embeddings for non-word objects like synsets and entities and learning word embeddings that incorporate the semantic information from the resource. The method is based on encoding and decoding the word embeddings and is flexible in that it can take any word embeddings as input and does not need an additional training corpus. The obtained embeddings live in the same vector space as the input word embeddings. A sparse tensor formalization guarantees efficiency and parallelizability. We use WordNet, GermaNet, and Freebase as semantic resources. AutoExtend achieves state-of-the-art performance on Word-in-Context Similarity and Word Sense Disambiguation tasks.


2017 ◽  
Vol 43 (1) ◽  
pp. 31-70 ◽  
Author(s):  
Rocco Tripodi ◽  
Marcello Pelillo

This article presents a new model for word sense disambiguation formulated in terms of evolutionary game theory, where each word to be disambiguated is represented as a node on a graph whose edges represent word relations and senses are represented as classes. The words simultaneously update their class membership preferences according to the senses that neighboring words are likely to choose. We use distributional information to weigh the influence that each word has on the decisions of the others and semantic similarity information to measure the strength of compatibility among the choices. With this information we can formulate the word sense disambiguation problem as a constraint satisfaction problem and solve it using tools derived from game theory, maintaining the textual coherence. The model is based on two ideas: Similar words should be assigned to similar classes and the meaning of a word does not depend on all the words in a text but just on some of them. The article provides an in-depth motivation of the idea of modeling the word sense disambiguation problem in terms of game theory, which is illustrated by an example. The conclusion presents an extensive analysis on the combination of similarity measures to use in the framework and a comparison with state-of-the-art systems. The results show that our model outperforms state-of-the-art algorithms and can be applied to different tasks and in different scenarios.


2014 ◽  
Vol 40 (4) ◽  
pp. 837-881 ◽  
Author(s):  
Mohammad Taher Pilehvar ◽  
Roberto Navigli

The evaluation of several tasks in lexical semantics is often limited by the lack of large amounts of manual annotations, not only for training purposes, but also for testing purposes. Word Sense Disambiguation (WSD) is a case in point, as hand-labeled datasets are particularly hard and time-consuming to create. Consequently, evaluations tend to be performed on a small scale, which does not allow for in-depth analysis of the factors that determine a systems' performance. In this paper we address this issue by means of a realistic simulation of large-scale evaluation for the WSD task. We do this by providing two main contributions: First, we put forward two novel approaches to the wide-coverage generation of semantically aware pseudowords (i.e., artificial words capable of modeling real polysemous words); second, we leverage the most suitable type of pseudoword to create large pseudosense-annotated corpora, which enable a large-scale experimental framework for the comparison of state-of-the-art supervised and knowledge-based algorithms. Using this framework, we study the impact of supervision and knowledge on the two major disambiguation paradigms and perform an in-depth analysis of the factors which affect their performance.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246751
Author(s):  
Ponrudee Netisopakul ◽  
Gerhard Wohlgenannt ◽  
Aleksei Pulich ◽  
Zar Zar Hlaing

Research into semantic similarity has a long history in lexical semantics, and it has applications in many natural language processing (NLP) tasks like word sense disambiguation or machine translation. The task of calculating semantic similarity is usually presented in the form of datasets which contain word pairs and a human-assigned similarity score. Algorithms are then evaluated by their ability to approximate the gold standard similarity scores. Many such datasets, with different characteristics, have been created for English language. Recently, four of those were transformed to Thai language versions, namely WordSim-353, SimLex-999, SemEval-2017-500, and R&G-65. Given those four datasets, in this work we aim to improve the previous baseline evaluations for Thai semantic similarity and solve challenges of unsegmented Asian languages (particularly the high fraction of out-of-vocabulary (OOV) dataset terms). To this end we apply and integrate different strategies to compute similarity, including traditional word-level embeddings, subword-unit embeddings, and ontological or hybrid sources like WordNet and ConceptNet. With our best model, which combines self-trained fastText subword embeddings with ConceptNet Numberbatch, we managed to raise the state-of-the-art, measured with the harmonic mean of Pearson on Spearman ρ, by a large margin from 0.356 to 0.688 for TH-WordSim-353, from 0.286 to 0.769 for TH-SemEval-500, from 0.397 to 0.717 for TH-SimLex-999, and from 0.505 to 0.901 for TWS-65.


Author(s):  
Edoardo Barba ◽  
Luigi Procopio ◽  
Caterina Lacerra ◽  
Tommaso Pasini ◽  
Roberto Navigli

Recently, generative approaches have been used effectively to provide definitions of words in their context. However, the opposite, i.e., generating a usage example given one or more words along with their definitions, has not yet been investigated. In this work, we introduce the novel task of Exemplification Modeling (ExMod), along with a sequence-to-sequence architecture and a training procedure for it. Starting from a set of (word, definition) pairs, our approach is capable of automatically generating high-quality sentences which express the requested semantics. As a result, we can drive the creation of sense-tagged data which cover the full range of meanings in any inventory of interest, and their interactions within sentences. Human annotators agree that the sentences generated are as fluent and semantically-coherent with the input definitions as the sentences in manually-annotated corpora. Indeed, when employed as training data for Word Sense Disambiguation, our examples enable the current state of the art to be outperformed, and higher results to be achieved than when using gold-standard datasets only. We release the pretrained model, the dataset and the software at https://github.com/SapienzaNLP/exmod.


Sign in / Sign up

Export Citation Format

Share Document