scholarly journals Reports of the AAAI 2017 Fall Symposium Series

AI Magazine ◽  
2018 ◽  
Vol 39 (2) ◽  
pp. 81-86
Author(s):  
Arjuna Flenner ◽  
Marlena R. Fraune ◽  
Laura M. Hiatt ◽  
Tony Kendall ◽  
John E. Laird ◽  
...  

The AAAI 2017 Fall Symposium Series was held Thursday through Saturday, November 9–11, at the Westin Arlington Gateway in Arlington, Virginia, adjacent to Washington, DC. The titles of the six symposia were Artificial Intelligence for Human-Robot Interaction; Cognitive Assistance in Government and Public Sector Applications; Deep Models and Artificial Intelligence for Military Applications: Potentials, Theories, Practices, Tools and Risks; Human-Agent Groups: Studies, Algorithms and Challenges; Natural Communication for Human-Robot Collaboration; and A Standard Model of the Mind. The highlights of each symposium (except the Natural Communication for Human-Robot Collaboration symposium, whose organizers did not submit a report) are presented in this report.

AI Magazine ◽  
2015 ◽  
Vol 36 (3) ◽  
pp. 107-112
Author(s):  
Adam B. Cohen ◽  
Sonia Chernova ◽  
James Giordano ◽  
Frank Guerin ◽  
Kris Hauser ◽  
...  

The AAAI 2014 Fall Symposium Series was held Thursday through Saturday, November 13–15, at the Westin Arlington Gateway in Arlington, Virginia adjacent to Washington, DC. The titles of the seven symposia were Artificial Intelligence for Human-Robot Interaction, Energy Market Prediction, Expanding the Boundaries of Health Informatics Using AI, Knowledge, Skill, and Behavior Transfer in Autonomous Robots, Modeling Changing Perspectives: Reconceptualizing Sensorimotor Experiences, Natural Language Access to Big Data, and The Nature of Humans and Machines: A Multidisciplinary Discourse. The highlights of each symposium are presented in this report.


AI Magazine ◽  
2016 ◽  
Vol 37 (2) ◽  
pp. 85-90 ◽  
Author(s):  
Nisar Ahmed ◽  
Paul Bello ◽  
Selmer Bringsjord ◽  
Micah Clark ◽  
Bradley Hayes ◽  
...  

The Association for the Advancement of Artificial Intelligence presented the 2015 Fall Symposium Series, on Thursday through Saturday, November 12-14, at the Westin Arlington Gateway in Arlington, Virginia. The titles of the six symposia were as follows: AI for Human-Robot Interaction, Cognitive Assistance in Government and Public Sector Applications, Deceptive and Counter-Deceptive Machines, Embedded Machine Learning, Self-Confidence in Autonomous Systems, and Sequential Decision Making for Intelligent Agents. This article contains the reports from four of the symposia.


AI Magazine ◽  
2017 ◽  
Vol 38 (2) ◽  
pp. 86-90
Author(s):  
Patrícia Alves-Oliveira ◽  
Richard G. Freedman ◽  
Dan Grollman ◽  
Laura Herlant ◽  
Laura Humphrey ◽  
...  

The AAAI 2016 Fall Symposium Series was held Thursday through Saturday, November 17–19, at the Westin Arlington Gateway in Arlington, Virginia adjacent to Washington, DC. The titles of the six symposia were Accelerating Science: A Grand Challenge for AI; Artificial Intelligence for Human-Robot Interaction, Cognitive Assistance in Government and Public Sector Applications, Cross-Disciplinary Challenges for Autonomous Systems, Privacy and Language Technologies, Shared Autonomy in Research and Practice. The highlights of each (except Acceleration Science) symposium are presented in this report.


AI Magazine ◽  
2017 ◽  
Vol 37 (4) ◽  
pp. 83-88
Author(s):  
Christopher Amato ◽  
Ofra Amir ◽  
Joanna Bryson ◽  
Barbara Grosz ◽  
Bipin Indurkhya ◽  
...  

The Association for the Advancement of Artificial Intelligence, in cooperation with Stanford University's Department of Computer Science, presented the 2016 Spring Symposium Series on Monday through Wednesday, March 21-23, 2016 at Stanford University. The titles of the seven symposia were (1) AI and the Mitigation of Human Error: Anomalies, Team Metrics and Thermodynamics; (2) Challenges and Opportunities in Multiagent Learning for the Real World (3) Enabling Computing Research in Socially Intelligent Human-Robot Interaction: A Community-Driven Modular Research Platform; (4) Ethical and Moral Considerations in Non-Human Agents; (5) Intelligent Systems for Supporting Distributed Human Teamwork; (6) Observational Studies through Social Media and Other Human-Generated Content, and (7) Well-Being Computing: AI Meets Health and Happiness Science.


2007 ◽  
Vol 8 (3) ◽  
pp. 391-410 ◽  
Author(s):  
Justine Cassell ◽  
Andrea Tartaro

What is the hallmark of success in human–agent interaction? In animation and robotics, many have concentrated on the looks of the agent — whether the appearance is realistic or lifelike. We present an alternative benchmark that lies in the dyad and not the agent alone: Does the agent’s behavior evoke intersubjectivity from the user? That is, in both conscious and unconscious communication, do users react to behaviorally realistic agents in the same way they react to other humans? Do users appear to attribute similar thoughts and actions? We discuss why we distinguish between appearance and behavior, why we use the benchmark of intersubjectivity, our methodology for applying this benchmark to embodied conversational agents (ECAs), and why we believe this benchmark should be applied to human–robot interaction.


2019 ◽  
Vol 30 (1) ◽  
pp. 7-8
Author(s):  
Dora Maria Ballesteros

Artificial intelligence (AI) is an interdisciplinary subject in science and engineering that makes it possible for machines to learn from data. Artificial Intelligence applications include prediction, recommendation, classification and recognition, object detection, natural language processing, autonomous systems, among others. The topics of the articles in this special issue include deep learning applied to medicine [1, 3], support vector machine applied to ecosystems [2], human-robot interaction [4], clustering in the identification of anomalous patterns in communication networks [5], expert systems for the simulation of natural disaster scenarios [6], real-time algorithms of artificial intelligence [7] and big data analytics for natural disasters [8].


Author(s):  
Shan G. Lakhmani ◽  
Julia L. Wright ◽  
Michael R. Schwartz ◽  
Daniel Barber

Human-robot interaction requires communication, however what form this communication should take to facilitate effective team performance is still undetermined. One notion is that effective human-agent communications can be achieved by combining transparent information-sharing techniques with specific communication patterns. This study examines how transparency and a robot’s communication patterns interact to affect human performance in a human-robot teaming task. Participants’ performance in a target identification task was affected by the robot’s communication pattern. Participants missed identifying more targets when they worked with a bidirectionally communicating robot than when they were working with a unidirectionally communicating one. Furthermore, working with a bidirectionally communicating robot led to fewer correct identifications than working with a unidirectionally communicating robot, but only when the robot provided less transparency information. The implications these findings have for future robot interface designs are discussed.


Author(s):  
Roberta Etzi ◽  
Siyuan Huang ◽  
Giulia Wally Scurati ◽  
Shilei Lyu ◽  
Francesco Ferrise ◽  
...  

Abstract The use of collaborative robots in the manufacturing industry has widely spread in the last decade. In order to be efficient, the human-robot collaboration needs to be properly designed by also taking into account the operator’s psychophysiological reactions. Virtual Reality can be used as a tool to simulate human-robot collaboration in a safe and cheap way. Here, we present a virtual collaborative platform in which the human operator and a simulated robot coordinate their actions to accomplish a simple assembly task. In this study, the robot moved slowly or more quickly in order to assess the effect of its velocity on the human’s responses. Ten participants tested this application by using an Oculus Rift head-mounted display; ARTracking cameras and a Kinect system were used to track the operator’s right arm movements and hand gestures respectively. Performance, user experience, and physiological responses were recorded. The results showed that while humans’ performances and evaluations varied as a function of the robot’s velocity, no differences were found in the physiological responses. Taken together, these data highlight the relevance of the kinematic aspects of robot’s motion within a human-robot collaboration and provide valuable insights to further develop our virtual human-machine interactive platform.


Sign in / Sign up

Export Citation Format

Share Document