Incorporating Motivation in a Hybrid Robot Architecture

Author(s):  
Alexander Stoytchev ◽  
◽  
Ronald C. Arkin

This paper describes a hybrid mobile robot architecture that addresses three main challenges for robots living in human-inhabited environments: how to operate in dynamic and unpredictable environment, how to deal with high-level human commands, and how to engage human users. The architecture combines three components: deliberative planning, reactive control, and motivational drives. It has been proven useful for controlling mobile robots in man-made environments. Results are reported for a fax delivery mission in a normal office environment.

2020 ◽  
Vol 69 ◽  
pp. 471-500
Author(s):  
Shih-Yun Lo ◽  
Shiqi Zhang ◽  
Peter Stone

Intelligent mobile robots have recently become able to operate autonomously in large-scale indoor environments for extended periods of time. In this process, mobile robots need the capabilities of both task and motion planning. Task planning in such environments involves sequencing the robot’s high-level goals and subgoals, and typically requires reasoning about the locations of people, rooms, and objects in the environment, and their interactions to achieve a goal. One of the prerequisites for optimal task planning that is often overlooked is having an accurate estimate of the actual distance (or time) a robot needs to navigate from one location to another. State-of-the-art motion planning algorithms, though often computationally complex, are designed exactly for this purpose of finding routes through constrained spaces. In this article, we focus on integrating task and motion planning (TMP) to achieve task-level-optimal planning for robot navigation while maintaining manageable computational efficiency. To this end, we introduce TMP algorithm PETLON (Planning Efficiently for Task-Level-Optimal Navigation), including two configurations with different trade-offs over computational expenses between task and motion planning, for everyday service tasks using a mobile robot. Experiments have been conducted both in simulation and on a mobile robot using object delivery tasks in an indoor office environment. The key observation from the results is that PETLON is more efficient than a baseline approach that pre-computes motion costs of all possible navigation actions, while still producing plans that are optimal at the task level. We provide results with two different task planning paradigms in the implementation of PETLON, and offer TMP practitioners guidelines for the selection of task planners from an engineering perspective.


Author(s):  
KS Nagla ◽  
Moin Uddin ◽  
Dilbag Singh

<p>Sensor based perception of the environment is an emerging area of the mobile robot research where sensors play a pivotal role. For autonomous mobile robots, the fundamental requirement is the convergent of the range information in to high level internal representation. Internal representation in the form of occupancy grid is commonly used in autonomous mobile robots due to its various advantages. There are several sensors such as vision sensor, laser rage finder, and ultrasonic and infrared sensors etc. play roles in mapping. However the sensor information failure, sensor inaccuracies, noise, and slow response are the major causes of an error in the mapping. To improve the reliability of the mobile robot mapping multisensory data fusion is considered as an optimal solution. This paper presents a novel architecture of sensor fusion frame work in which a dedicated filter (DF) is proposed to increase the robustness of the occupancy grid for indoor environment. The technique has been experimentally verified for different indoor test environments. The proposed configuration shows improvement in the occupancy grid with the implementation of dedicated filters.</p>


2013 ◽  
Vol 10 (1) ◽  
pp. 59-72 ◽  
Author(s):  
Aleksandar Cosic ◽  
Marko Susic ◽  
Stevica Graovac ◽  
Dusko Katic

Solution of the formation guidance in structured static environments is presented in this paper. It is assumed that high level planner is available, which generates collision free trajectory for the leader robot. Leader robot is forced to track generated trajectory, while followers? trajectories are generated based on the trajectory realized by the real leader. Real environments contain large number of static obstacles, which can be arbitrarily positioned. Hence, formation switching becomes necessary in cases when followers can collide with obstacles. In order to ensure trajectory tracking, as well as object avoidance, control structure with several controllers of different roles (trajectory tracking, obstacle avoiding, vehicle avoiding and combined controller) has been adopted. Kinematic model of differentially driven two-wheeled mobile robot is assumed. Simulation results show the efficiency of the proposed approach.


2000 ◽  
Vol 12 (3) ◽  
pp. 242-248 ◽  
Author(s):  
Yasuhisa Hirata ◽  
◽  
Kazuhiro Kosuge ◽  
Tomohiro Oosumi ◽  
Hajime Asama ◽  
...  

In this paper, we propose a new mobile robot architecture with a body force sensor. The body force sensor is the force/torque sensor, which is located between the drive mechanism and the body of the mobile robot. The use of the body force sensor almost realizes the collocation of sensor and actuators, and makes the whole body of the mobile robot sensitive to external force/moment. Decentralized motion control algorithm for handling a single object by multiple mobile robots in coordination is implemented in each omni-dirctional mobile robot and multiple mobile robots with the body force sensor realize stable handling of an object. Experimental results illustrate the validity of the proposed architecture.


1999 ◽  
Vol 11 (1) ◽  
pp. 17-24
Author(s):  
Takayuki Tanaka ◽  
◽  
Yasunori Yamazaki ◽  
Hiroki Watanabe ◽  
Takeshi Katae ◽  
...  

We have been developing an intelligent mobile robot for use as an office building secretary or aid during the day and a security guard or maintenance engineer, e.g., for cleaning floors, at night. Since the robot works and moves autonomously among people in an office environment, it must be able to recognize its own location and environment. We proposed two types of self-positoin detection based on a visual sensor. One is global self-positioning (GSP) by recognizing a room number. The other is local self-positioning (LSP) calculating the relationship between the robot and three light landmarks such as two exit lamps and a fire hydrant lamp in corridors. Experiments verified the effectiveness of the robot's self-position detection.


2010 ◽  
Vol 7 ◽  
pp. 109-117
Author(s):  
O.V. Darintsev ◽  
A.B. Migranov ◽  
B.S. Yudintsev

The article deals with the development of a high-speed sensor system for a mobile robot, used in conjunction with an intelligent method of planning trajectories in conditions of high dynamism of the working space.


2021 ◽  
Vol 11 (4) ◽  
pp. 1594 ◽  
Author(s):  
Andrea Botta ◽  
Paride Cavallone ◽  
Luigi Tagliavini ◽  
Luca Carbonari ◽  
Carmen Visconte ◽  
...  

In this paper, the effects of wheel slip compensation in trajectory planning for mobile tractor-trailer robot applications are investigated. Firstly, a kinematic model of the proposed robot architecture is marked out, then an experimental campaign is done to identify if it is possible to kinematically compensate trajectories that otherwise would be subject to large lateral slip. Due to the close connection to the experimental data, the results shown are valid only for Epi.q, the prototype that is the main object of this manuscript. Nonetheless, the base concept can be usefully applied to any mobile robot subject to large lateral slip.


1992 ◽  
Vol 337 (1281) ◽  
pp. 341-350 ◽  

Localized feature points, particularly corners, can be computed rapidly and reliably in images, and they are stable over image sequences. Corner points provide more constraint than edge points, and this additional constraint can be propagated effectively from corners along edges. Implemented algorithms are described to compute optic flow and to determine scene structure for a mobile robot using stereo or structure from motion. It is argued that a mobile robot may not need to compute depth explicitly in order to navigate effectively.


Sign in / Sign up

Export Citation Format

Share Document