scholarly journals Efficient Large-Scale Multi-Drone Delivery using Transit Networks

2021 ◽  
Vol 70 ◽  
pp. 757-788
Author(s):  
Shushman Choudhury ◽  
Kiril Solovey ◽  
Mykel J. Kochenderfer ◽  
Marco Pavone

We consider the problem of routing a large fleet of drones to deliver packages simultaneously across broad urban areas. Besides flying directly, drones can use public transit vehicles such as buses and trams as temporary modes of transportation to conserve energy. Adding this capability to our formulation augments effective drone travel range and the space of possible deliveries but also increases problem input size due to the large transit networks. We present a comprehensive algorithmic framework that strives to minimize the maximum time to complete any delivery and addresses the multifaceted computational challenges of our problem through a two-layer approach. First, the upper layer assigns drones to package delivery sequences with an approximately optimal polynomial time allocation algorithm. Then, the lower layer executes the allocation by periodically routing the fleet over the transit network, using efficient, bounded suboptimal multi-agent pathfinding techniques tailored to our setting. We demonstrate the efficiency of our approach on simulations with up to 200 drones, 5000 packages, and transit networks with up to 8000 stops in San Francisco and the Washington DC Metropolitan Area. Our framework computes solutions for most settings within a few seconds on commodity hardware and enables drones to extend their effective range by a factor of nearly four using transit.

2018 ◽  
Author(s):  
Pedro J. Pinto ◽  
G. Mathias Kondolf ◽  
Pun Lok Raymond Wong

San Francisco Bay, the largest estuary on the Pacific Coast of North America, is heavily encroached by a metropolitan region with over 7 million inhabitants. Urban development and infrastructure, much of which built over landfill and at the cost of former baylands, were placed at very low elevations. Sea-level rise (SLR) poses a formidable challenge to these highly exposed urban areas and already stressed natural systems. “Green”, or ecosystem-based, adaptation is already on the way around the Bay. Large scale wetland restoration projects have already been concluded, and further action now often requires articulation with the reinforcement of flood defense structures, given the level of urban encroachment. While levee setback, or removal, would provide greater environmental benefit, the need to protect urban areas and infrastructure has led to the trial of ingenious solutions for promoting wetland resilience while upgrading the level of protection granted by levees.We analyzed the Bay’s environmental governance and planning structure, through direct observation, interviews with stakeholders, and study of planning documents and projects. We present two cases where actual implementation of SLR adaptation has led, or may lead to, the need to revise standards & practices or to make uneasy choices between conflicting public interests.Among the region’s stakeholders, there is an increasing awareness of the risks related to SLR, but the institutional arrangements are complex, and communication between the different public agencies/departments is not always as streamlined as it could be. Some agencies and departments need to adapt their procedures in order to remove institutional barriers to adaptation, but path dependence is an obstacle. There is evidence that more frank and regular communication between public actors is needed. It also emphasizes the benefits of a coordination of efforts and strategies, something that was eroded in the transition from government-led policies to a new paradigm of local-based adaptive governance.


Author(s):  
Guohao Zhang ◽  
Bing Xu ◽  
Hoi-Fung Ng ◽  
Li-Ta Hsu

Accurate localization of road agents is the basis of intelligent transportation systems, which is still difficult to achieve for GNSS positioning in urban areas due to the signal interferences from buildings. Various collaborative positioning techniques are recently developed to improve the positioning performance by the aid from neighboring agents. However, it is still challenging to study their performances comprehensively. The GNSS measurement error behavior is complicated in urban areas and unable to be represented by naive models. On the other hand, real experiment requiring numbers of devices is hard to be conducted, especially for a large-scale test. Therefore, a GNSS realistic urban measurement simulator is developed to provide measurements for collaborative positioning studies. The proposed simulator employs a ray-tracing technique searching for all possible interferences in the urban area. Then, it categorizes them into direct, reflected, diffracted, and multipath signal to simulate the pseudorange, carrier-phase, 〖C/N〗_0, and Doppler shift measurements correspondingly. The performance of the proposed simulator is validated through real experimental comparisons with different scenarios. The proposed simulator is also applied with different positioning algorithms, which verifies it is sophisticated enough for the collaborative positioning studies in the urban area.


2013 ◽  
Vol 3 (2) ◽  
pp. 222-229 ◽  
Author(s):  
Clarissa Brocklehurst ◽  
Murtaza Malik ◽  
Kiwe Sebunya ◽  
Peter Salama

A devastating cholera epidemic swept Zimbabwe in 2008, causing over 90,000 cases, and leaving more than 4,000 dead. The epidemic raged predominantly in urban areas, and the cause could be traced to the slow deterioration of Zimbabwe's water and sewerage utilities during the economic and political crisis that had gripped the country since the late 1990s. Rapid improvement was needed if the country was to avoid another cholera outbreak. In this context, donors, development agencies and government departments joined forces to work in a unique partnership, and to implement a programme of swift improvements that went beyond emergency humanitarian aid but did not require the time or massive investment associated with full-scale urban rehabilitation. The interventions ranged from supply of water treatment chemicals and sewer rods to advocacy and policy advice. The authors analyse the factors that made the programme effective and the challenges that partners faced. The case of Zimbabwe offers valuable lessons for other countries transitioning from emergency to development, and particularly those that need to take rapid action to upgrade failing urban systems. It illustrates that there is a ‘middle path’ between short-term humanitarian aid delivered in urban areas and large-scale urban rehabilitation, which can provide timely and highly effective results.


2021 ◽  
Vol 13 (2) ◽  
pp. 284
Author(s):  
Dan Lu ◽  
Yahui Wang ◽  
Qingyuan Yang ◽  
Kangchuan Su ◽  
Haozhe Zhang ◽  
...  

The sustained growth of non-farm wages has led to large-scale migration of rural population to cities in China, especially in mountainous areas. It is of great significance to study the spatial and temporal pattern of population migration mentioned above for guiding population spatial optimization and the effective supply of public services in the mountainous areas. Here, we determined the spatiotemporal evolution of population in the Chongqing municipality of China from 2000–2018 by employing multi-period spatial distribution data, including nighttime light (NTL) data from the Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS) and the Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (NPP-VIIRS). There was a power function relationship between the two datasets at the pixel scale, with a mean relative error of NTL integration of 8.19%, 4.78% less than achieved by a previous study at the provincial scale. The spatial simulations of population distribution achieved a mean relative error of 26.98%, improved the simulation accuracy for mountainous population by nearly 20% and confirmed the feasibility of this method in Chongqing. During the study period, the spatial distribution of Chongqing’s population has increased in the west and decreased in the east, while also increased in low-altitude areas and decreased in medium-high altitude areas. Population agglomeration was common in all of districts and counties and the population density of central urban areas and its surrounding areas significantly increased, while that of non-urban areas such as northeast Chongqing significantly decreased.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Yang Jiang ◽  
Tao Gong ◽  
Luis E. Saldivia ◽  
Gabrielle Cayton-Hodges ◽  
Christopher Agard

AbstractIn 2017, the mathematics assessments that are part of the National Assessment of Educational Progress (NAEP) program underwent a transformation shifting the administration from paper-and-pencil formats to digitally-based assessments (DBA). This shift introduced new interactive item types that bring rich process data and tremendous opportunities to study the cognitive and behavioral processes that underlie test-takers’ performances in ways that are not otherwise possible with the response data alone. In this exploratory study, we investigated the problem-solving processes and strategies applied by the nation’s fourth and eighth graders by analyzing the process data collected during their interactions with two technology-enhanced drag-and-drop items (one item for each grade) included in the first digital operational administration of the NAEP’s mathematics assessments. Results from this research revealed how test-takers who achieved different levels of accuracy on the items engaged in various cognitive and metacognitive processes (e.g., in terms of their time allocation, answer change behaviors, and problem-solving strategies), providing insights into the common mathematical misconceptions that fourth- and eighth-grade students held and the steps where they may have struggled during their solution process. Implications of the findings for educational assessment design and limitations of this research are also discussed.


2021 ◽  
pp. 001946622110132
Author(s):  
Astha Agarwalla ◽  
Errol D’Souza

The policy responses to Covid-19 have triggered large-scale reverse migration from cities to rural areas in developing countries, exposing the vulnerability of migrants living precarious lives in cities, giving rise to debates asserting to migration as undesirable and favouring policy options to discourage the process. However, the very basis of spatial concentration and formation of cities is presence of agglomeration economies, benefits accruing to economic agents operating in cities. Presence of these agglomeration benefits in local labour markets manifests themselves in the form of an upward sloping wage curve in urban areas. We estimate the upward sloping wage curve for various size classes of cities in Indian economy and establish the presence of positive returns to occupation and industry concentration at urban locations. Controlling for worker-specific characteristics influencing wages, we establish that higher the share of an industry or an occupation in local employment as compared to national economy, the desirability of firms to pay higher wages increases. For casual labourers, occupational concentration results in higher wages. However, impact of industry concentration varies across sectors. Results supporting presence of upward sloping urban wage curve, therefore, endorse policies to correct the market failure in cities and promote migration as a desirable process. JEL Classification Codes: J2, R2


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jay A. VonBank ◽  
Mitch D. Weegman ◽  
Paul T. Link ◽  
Stephanie A. Cunningham ◽  
Kevin J. Kraai ◽  
...  

Abstract Background Animal movement patterns are the result of both environmental and physiological effects, and the rates of movement and energy expenditure of given movement strategies are influenced by the physical environment an animal inhabits. Greater white-fronted geese in North America winter in ecologically distinct regions and have undergone a large-scale shift in wintering distribution over the past 20 years. White-fronts continue to winter in historical wintering areas in addition to contemporary areas, but the rates of movement among regions, and energetic consequences of those decisions, are unknown. Additionally, linkages between wintering and breeding regions are generally unknown, and may influence within-winter movement rates. Methods We used Global Positioning System and acceleration data from 97 white-fronts during two winters to elucidate movement characteristics, model regional transition probabilities using a multistate model in a Bayesian framework, estimate regional energy expenditure, and determine behavior time-allocation influences on energy expenditure using overall dynamic body acceleration and linear mixed-effects models. We assess the linkages between wintering and breeding regions by evaluating the winter distributions for each breeding region. Results White-fronts exhibited greater daily movement early in the winter period, and decreased movements as winter progressed. Transition probabilities were greatest towards contemporary winter regions and away from historical wintering regions. Energy expenditure was up to 55% greater, and white-fronts spent more time feeding and flying, in contemporary wintering regions compared to historical regions. White-fronts subsequently summered across their entire previously known breeding distribution, indicating substantial mixing of individuals of varying breeding provenance during winter. Conclusions White-fronts revealed extreme plasticity in their wintering strategy, including high immigration probability to contemporary wintering regions, high emigration from historical wintering regions, and high regional fidelity to western regions, but frequent movements among eastern regions. Given that movements of white-fronts trended toward contemporary wintering regions, we anticipate that a wintering distribution shift eastward will continue. Unexpectedly, greater energy expenditure in contemporary wintering regions revealed variable energetic consequences of choice in wintering region and shifting distribution. Because geese spent more time feeding in contemporary regions than historical regions, increased energy expenditure is likely balanced by increased energy acquisition in contemporary wintering areas.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2771
Author(s):  
Leszek Kotulski ◽  
Artur Basiura ◽  
Igor Wojnicki ◽  
Sebastian Siuchta

The use of formal methods and artificial intelligence has made it possible to automatically design outdoor lighting. Quick design for large cities, in a matter of hours instead of weeks, and analysis of various optimization criteria enables to save energy and tune profit stream from lighting retrofit. Since outdoor lighting is of a large scale, having luminaires on every street in urban areas, and since it needs to be retrofitted every 10 to 15 years, choosing proper parameters and light sources leads to significant energy savings. This paper presents the concept and calculations of Levelized Cost of Electricity for outdoor lighting retrofit. It is understood as cost of energy savings, it is in the range from 23.06 to 54.64 EUR/MWh, based on real-world cases. This makes street and road lighting modernization process the best green “energy source” if compared with the 2018 Fraunhofer Institute cost of electricity renewable energy technologies ranking. This indicates that investment in lighting retrofit is more economically and ecologically viable than investment in new renewable energy sources.


Sign in / Sign up

Export Citation Format

Share Document