scholarly journals ZERO++: Harnessing the Power of Zero Appearances to Detect Anomalies in Large-Scale Data Sets

2016 ◽  
Vol 57 ◽  
pp. 593-620 ◽  
Author(s):  
Guansong Pang ◽  
Kai Ming Ting ◽  
David Albrecht ◽  
Huidong Jin

This paper introduces a new unsupervised anomaly detector called ZERO++ which employs the number of zero appearances in subspaces to detect anomalies in categorical data. It is unique in that it works in regions of subspaces that are not occupied by data; whereas existing methods work in regions occupied by data. ZERO++ examines only a small number of low dimensional subspaces to successfully identify anomalies. Unlike existing frequency-based algorithms, ZERO++ does not involve subspace pattern searching. We show that ZERO++ is better than or comparable with the state-of-the-art anomaly detection methods over a wide range of real-world categorical and numeric data sets; and it is efficient with linear time complexity and constant space complexity which make it a suitable candidate for large-scale data sets.

Author(s):  
Vo Ngoc Phu ◽  
Vo Thi Ngoc Tran

Artificial intelligence (ARTINT) and information have been famous fields for many years. A reason has been that many different areas have been promoted quickly based on the ARTINT and information, and they have created many significant values for many years. These crucial values have certainly been used more and more for many economies of the countries in the world, other sciences, companies, organizations, etc. Many massive corporations, big organizations, etc. have been established rapidly because these economies have been developed in the strongest way. Unsurprisingly, lots of information and large-scale data sets have been created clearly from these corporations, organizations, etc. This has been the major challenges for many commercial applications, studies, etc. to process and store them successfully. To handle this problem, many algorithms have been proposed for processing these big data sets.


2017 ◽  
Author(s):  
Shirley M. Matteson ◽  
Sonya E. Sherrod ◽  
Sevket Ceyhun Cetin

2017 ◽  
Vol 135 ◽  
pp. 77-88 ◽  
Author(s):  
Wenfen Liu ◽  
Mao Ye ◽  
Jianghong Wei ◽  
Xuexian Hu

Sign in / Sign up

Export Citation Format

Share Document