Seed Germination and Seedling Emergence of Synedrella (Synedrella nodiflora) in a Tropical Environment

Weed Science ◽  
2009 ◽  
Vol 57 (1) ◽  
pp. 36-42 ◽  
Author(s):  
Bhagirath S. Chauhan ◽  
David E. Johnson

Synedrella is a tropical annual plant species of the family Asteraceae that is widely distributed in many crops in nearly 50 countries. Experiments were conducted to determine the influence of various environmental factors on seed germination and seedling emergence of synedrella. Germination response was greater at 30/20 C and 35/25 C than at 25/15 C fluctuating day/night temperatures. Light stimulated germination; however, a small proportion of after-ripened seeds germinated in the dark. Seedling emergence was greatest (96%) for seeds placed on the soil surface but declined with increased seed burial depth. No seedlings emerged from a depth of 4 cm. Seedling emergence and seedling dry matter declined with the addition of crop residue to the soil surface; however, higher quantities of residue than those normally found in low-yield systems were required to result in substantial reductions in emergence. Seed germination was tolerant of moderate salt concentrations (40 to 100 mM sodium chloride) and a broad range of pH (4 to 10) but was sensitive to low osmotic potentials (< −0.8 MPa). The information gained from this study could help predict the invasion potential of this species and could lead to improved management strategies.

Weed Science ◽  
2016 ◽  
Vol 65 (1) ◽  
pp. 141-150 ◽  
Author(s):  
Wei Tang ◽  
Jie Chen ◽  
Jianping Zhang ◽  
Yongliang Lu

Triquetrous murdannia is an annual weed commonly found in rice fields in China. Laboratory and screenhouse experiments were carried out to determine the effect of light, temperature, osmotic and salt stress, seed burial depth, amount of rice residue, and depth of flooding on seed germination and seedling emergence of triquetrous murdannia and to evaluate the response of this weed to commonly available POST herbicides in China. Germination was greater than 93% under a wide day/night temperature range of 20/10 to 30/20 C in the light/dark regime. The time to onset of germination decreased as temperature increased. Germination was slightly stimulated when seeds were placed in light/dark conditions compared with seeds placed in the dark. The osmotic potential and NaCl concentration required for 50% inhibition of maximum germination were −0.5 MPa and 122 mM, respectively. The highest germination (68%) was observed from seeds sown on the soil surface, but decreased with increasing burial depth. Only 7% of seedlings emerged from a depth of 4 cm, and no seedlings emerged from seeds buried deeper than 6 cm. Seedling emergence decreased from 93 to 35% with increasing quantity of rice residue (1 to 6 103kg ha−1) applied on the soil surface. Seedling emergence was reduced by 40, 48, 64, and 70% at flooding depths of 1, 2, 4, and 6 cm, respectively, for the seeds sown on the soil surface. Fluroxypyr and MCPA herbicides provided 100% control of triquetrous murdannia at the 2- to 6-leaf stages; however, to achieve 100% control with bispyribac-sodium, MCPA+bentazone or MCPA+fluroxypyr, herbicides had to be applied by the 4-leaf stage. The results of this study could help in developing more sustainable and effective integrated weed management strategies for the control of triquetrous murdannia in rice fields in China.


Weed Science ◽  
2011 ◽  
Vol 59 (4) ◽  
pp. 512-516 ◽  
Author(s):  
Bhagirath Singh Chauhan

Crowfootgrass, a C4species, is one of the principal weeds of dry-seeded rice in Asia. Weed management decisions for this species can be derived from knowledge of its seed germination biology. Experiments were conducted in the laboratory and screenhouse to determine the effects of light, alternating day/night temperatures, water stress, seed burial depth, and rice residue on seed germination and seedling emergence of crowfootgrass and to evaluate the response of this weed to commonly available selective POST herbicides in the Philippines. Light stimulated seed germination, but it was not an absolute requirement for germination. Germination in the light/dark regime was greater at alternating day/night temperatures of 25/15 C (92%) than at 30/20 (70%) or 35/25 C (44%). The osmotic potential required for 50% inhibition of maximum germination was −0.23 MPa, although some seeds germinated at −0.6 MPa. Seedling emergence was greatest for the seeds placed on the soil surface (64%), and emergence declined with increased burial depth in soil. No seedlings emerged from a burial depth of 6 cm or greater. Seedling emergence of crowfootgrass was reduced by the addition of rice residue to the soil surface at rates equivalent to 4 to 6 Mg ha−1. Fenoxaprop-p-ethyl + ethoxysulfuron at 45 g ai ha−1provided excellent control of crowfootgrass when applied at the four- (99%) and six-leaf (86%) stage. The information gained from this study could contribute to developing components of integrated weed management strategies for crowfootgrass. Soil inversion by tillage to bury weed seeds below their maximum depth of emergence, use of crop residue as mulch, and early application of an effective POST herbicide could serve as important tools for managing crowfootgrass.


Weed Science ◽  
2008 ◽  
Vol 56 (5) ◽  
pp. 722-728 ◽  
Author(s):  
Bhagirath S. Chauhan ◽  
David E. Johnson

Southern and India crabgrass are important grass weeds of rice in many tropical countries. Environmental factors influenced seed germination and seedling emergence of these weeds. Seeds of both species germinated at a range of alternating temperatures (25/15, 30/20, and 35/25 C day/night), though the germination of southern crabgrass was reduced at the lowest alternating temperatures (25/15 C). Light stimulated germination of both species; however, a small proportion of southern crabgrass seeds germinated in the dark. Germination of India crabgrass was influenced to a greater degree by increasing salt and water stresses than was southern crabgrass. Seeds of both species germinated over a wide range of pH between 5 and 10. Seedling emergence of both species (98% for southern crabgrass and 94% for India crabgrass) was greatest for seeds placed on the soil surface. Seed burial depth of 2 cm completely inhibited emergence of India crabgrass, whereas for southern crabgrass, this depth was 8 cm. Knowledge gained from this study is expected to contribute to developing components of integrated weed management strategies for these species.


Weed Science ◽  
2020 ◽  
pp. 1-29
Author(s):  
Yonghuan Yue ◽  
Guili Jin ◽  
Weihua Lu ◽  
Ke Gong ◽  
Wanqiang Han ◽  
...  

Abstract Drunken horse grass [Achnatherum inebrians (Hance) Keng] is a perennial poisonous weed in western China. A comprehensive understanding of the ecological response of A. inebrians germination to environmental factors would facilitate the formulation of better management strategies for this weed. Experiments were conducted under laboratory conditions to assess the effects of various abiotic factors, including temperature, light, water, pH and burial depth, on the seed germination and seedling emergence of A. inebrians. The seeds germinated at constant temperatures of 15, 20, 25, 30, 35°C and in alternating-temperature regimes of 15/5, 20/10, 25/15, 30/20, 35/25, 40/30°C, and the seed germination percentages under constant and alternating temperatures ranged from 51% to 94% and 15% to 93%, respectively. Maximum germination occurred at a constant temperature of 25°C, and germination was prevented at 45/35°C. Light did not appear to affect seed germination. The germination percentage of seeds was more than 75% in the pH range of 5 to 10, with the highest germination percentage at pH 6. The seeds germinated at osmotic potentials of 0 MPa to -1.0 MPa, but decreasing osmotic potential inhibited germination, with no germination at -1.2MPa. After 21 d of low osmotic stress, the seeds that did not germinate after rehydration had not lost their vitality. The seedling emergence percentage was highest (90%) when seeds were buried at 1 cm but declined with increasing burial depth and no emergence at 9 cm. Deep tillage may be effective in limiting the seed germination and emergence of this species. The results of this study provide useful information on the conditions necessary for A. inebrians germination and provide a theoretical basis for science-based prediction, prevention and control of this species.


2013 ◽  
Vol 31 (4) ◽  
pp. 823-832 ◽  
Author(s):  
A. Derakhshan ◽  
J. Gherekhloo

Specific knowledge about the dormancy, germination, and emergence patterns of weed species aids the development of integrated management strategies. Laboratory studies were conducted to determine the effect of several environmental factors on seed germination and seedling emergence of Cyperus difformis. Germination of freshly harvested seeds was inhibited by darkness; however, when seeds were subsequently transferred to complete light they germinated readily. Our results showed that 2 wk of cold stratification overcome the light requirement for germination. Seeds of C. difformis were able to germinate over a broad range of temperatures (25/15, 30/20, 35/25, and 40/30 ºC day/night). The response of germination rate to temperature was described as a non-linear function. Based on model outputs, the base, the optimum and the ceiling temperatures were estimated as 14.81, 37.72 and 45 ºC, respectively. A temperature of 120 ºC for a 5 min was required to inhibit 50% of maximum germination. The osmotic potential and salinity required for 50% inhibition of maximum germination were -0.47 MPa and 135.57 mM, respectively. High percentage of seed germination (89%) was observed at pH=6 and decreased to 12% at alkaline medium (pH 9) pH. Seeds sown on the soil surface gave the greatest percentage of seedling emergence, and no seedlings emerged from seeds buried in soil at depths of 1 cm.


Weed Science ◽  
2017 ◽  
Vol 66 (1) ◽  
pp. 47-56 ◽  
Author(s):  
Ning Zhao ◽  
Qi Li ◽  
Wenlei Guo ◽  
Lele Zhang ◽  
Lu’an Ge ◽  
...  

Shortawn foxtail is an invasive grass weed infesting winter wheat and canola production in China. A better understanding of the germination ecology of shortawn foxtail would help to develop better control strategies for this weed. Experiments were conducted under laboratory conditions to evaluate the effects of various abiotic factors, including temperature, light, pH, osmotic stress, salt concentration, and planting depth, on seed germination and seedling emergence of shortawn foxtail. The results showed that the seed germination rate was greater than 90% over a wide range of constant (5 to 25C) and alternating (15/5 to 35/25C) temperatures. Maximum germination occurred at 20C or 25/15C, and no germination occurred at 35C. Light did not appear to have any effect on seed germination. Shortawn foxtail germination was 27% to 99% over a pH range of 4 to 10, and higher germination was obtained at alkaline pH values ranging from 7 to 10. Seed germination was sensitive to osmotic potential and completely inhibited at an osmotic potential of −0.6 MPa, but it was tolerant to salinity: germination even occurred at 200 mM NaCl (5%). Seedling emergence was highest (98%) when seeds were placed on the soil surface but declined with the increasing burial depth. No seedlings emerged when seeds were buried 6-cm deep. Deep tillage could be an effective measure to limit seed germination from increased burial depth. The results of this study will lead to a better understanding of the requirements for shortawn foxtail germination and emergence and will provide information that could contribute to its control.


Weed Science ◽  
2011 ◽  
Vol 59 (2) ◽  
pp. 182-187 ◽  
Author(s):  
Grace E-K. Bolfrey-Arku ◽  
Bhagirath S. Chauhan ◽  
David E. Johnson

Itchgrass is a weed of many crops throughout the tropics and one of the most important grass weeds of rainfed rice. Experiments were conducted in the laboratory and screenhouse to determine the effects of light, alternating day/night temperatures, high temperature pretreatment, water stress, seed burial depth, and rice residue on seed germination and seedling emergence of itchgrass in the Philippines. Two populations were evaluated and the results were consistent for both populations. Germination in the light/dark regime was greater at alternating day/night temperatures of 25/15 C than at 35/25, 30/20, or 20/10 C. Light was not a requirement for germination, but a light/dark regime increased germination by 96%, across temperature and population. A 5-min high temperature pretreatment for 50% inhibition of maximum itchgrass germination ranged from 145 to 151 C with no germination when seeds were exposed to ≥ 180 C. The osmotic potential required for 50% inhibition of maximum germination was −0.6 MPa for itchgrass, although some seeds germinated at −0.8 MPa. Seedling emergence was greatest for seeds placed on the soil surface, and emergence declined with increasing soil burial depth; no seedlings emerged from seeds buried at 10 cm. The addition of rice residue to soil surface in pots at rates equivalent to 4 to 6 Mg ha−1reduced itchgrass seedling emergence. Since seedling emergence was greatest at shallow depths and germination was stimulated by light, itchgrass may become a problem in systems where soil is cultivated at shallow depths. Knowledge gained in this study could contribute to developing components of integrated weed management strategies for itchgrass.


Weed Science ◽  
2018 ◽  
Vol 66 (6) ◽  
pp. 752-757 ◽  
Author(s):  
Gulshan Mahajan ◽  
Amar Matloob ◽  
Michael Walsh ◽  
Bhagirath S. Chauhan

AbstractAfrican turnipweed (Sisymbrium thellungiiO. E.Schulz) is an emerging problematic broadleaf weed of the northern grain region of Australia. Laboratory experiments were conducted to evaluate the effects of temperature, light, salinity, pH, seed burial depth, and the amount of wheat crop residue on germination and emergence of two AustralianS. thellungiiweed populations (population C, cropped area; population F, fence line). Both populations behaved similarly across different environmental conditions, except in the residue study. Although the seeds of both populations ofS. thellungiicould germinate under complete darkness, germination was best (~95%) under light/dark conditions at the 20/10 C temperature regime. Both populations ofS. thellungiigerminated over a wide range of day/night temperatures (15/5, 20/10, 25/15, and 30/20 C). Osmotic stress had negative effects on germination, with 54% seeds (averaged over populations) able to germinate at −0.1MPa. Complete germination inhibition for both populations was observed at −0.8MPa osmotic potential. Both populations germinated at sodium chloride (NaCl) concentrations ranging from 50 to 100 mM, beyond which germination was completely inhibited. There were substantial reductions in seed germination, 32% (averaged over populations) under highly acidic conditions (pH 4.0) as compared with the control (water: pH 6.4). Seed germination of both populations on the soil surface was 77%, and no seedlings emerged from a burial depth of 1 cm. The addition of 6 Mg ha−1of wheat (Triticum aestivumL.) residue reduced the emergence of the C and F populations ofS. thellungiiby 75% and 64%, respectively, as compared with the control (no residue). Information gathered from this study provides a better understanding of the factors favorable for germination and emergence ofS. thellungii, which will aid in developing management strategies in winter crops, especially wheat, barley (Hordeum vulgareL.), and chick pea (Cicer arietinumL.).


Weed Science ◽  
2009 ◽  
Vol 57 (5) ◽  
pp. 521-525 ◽  
Author(s):  
Shouhui Wei ◽  
Chaoxian Zhang ◽  
Xiangju Li ◽  
Hailan Cui ◽  
Hongjuan Huang ◽  
...  

Buffalobur is a noxious and invasive weed species native to North America. The influence of environmental factors on seed germination and seedling emergence of buffalobur were evaluated in laboratory and greenhouse experiments. The germination of buffalobur seeds occurred at temperatures ranging from 12.5 to 45 C, with optimum germination attained between 25 and 35 C. Buffalobur seeds germinated equally well under both a 14-h photoperiod and continuous darkness; however, prolonged light exposure (≥ 16 h) significantly inhibited the seed germination. Buffalobur seed is rather tolerant to low water potential and high salt stress, as germination was 28 and 52% at osmotic potentials of −1.1 MPa and salinity level of 160 mM, respectively. Medium pH has no significant effect on seed germination; germination was greater than 95% over a broad pH range from 3 to 10. Seedling emergence was higher (85%) for seeds buried at a soil depth of 2 cm than for those placed on the soil surface (32%), but no seedlings emerged when burial depth reached 8 cm. Knowledge of germination biology of buffalobur obtained in this study will be useful in predicting the potential distribution area and developing effective management strategies for this species.


Weed Science ◽  
1982 ◽  
Vol 30 (1) ◽  
pp. 102-105 ◽  
Author(s):  
Robert G. Wilson

Optimum germination of fringed sagebrush (Artemisia frigidaWilld.) occurred at alternating temperatures of 10 to 20 C. Seeds were able to germinate (15%) in NaCl concentrations of 5000 ppmw. Light was important in seed germination; however, its absence could be overcome by adding 30 ppmw GA3(gibberellic acid) to the germination medium. Optimum pH for germination was between 5.8 and 7.0. Depth of planting influenced seedling emergence; the greatest emergence occurred when seeds were planted on the soil surface; emergence was lower when seeds were buried at any depth in the soil. Osmotic potentials of −13 bars and greater reduced germination, but 6% of the seeds germinated at −15 bars. Fringed sagebrush seedlings tolerated average plant water potentials of −10 to −19 bars and died when water potentials were decreased to −22 bars. Mature fringed sagebrush plants were capable of producing from 16500 to 190000 seeds/plant.


Sign in / Sign up

Export Citation Format

Share Document