Effect of Cry3Bb Bt Corn and Tefluthrin on Postdispersal Weed Seed Predation

Weed Science ◽  
2014 ◽  
Vol 62 (4) ◽  
pp. 619-624 ◽  
Author(s):  
Antonio DiTommaso ◽  
Matthew R. Ryan ◽  
Charles L. Mohler ◽  
Daniel C. Brainard ◽  
Rachel E. Shuler ◽  
...  

Indirect effects of insect control strategies on weed populations are important to consider when developing robust integrated pest management strategies. Weed seed predation rates were investigated in corn managed under three contrasting treatments based on control practices for corn rootworm: (1) the transgenic crop Cry3Bb Bt corn, (2) the broad-spectrum insecticide tefluthrin, and (3) no insecticide control. This 2-yr field study conducted near Ithaca, NY, involved quantifying seed loss from velvetleaf, common lambsquarters, and giant foxtail in arenas with and without vertebrate exclosures. Velvetleaf and giant foxtail were unaffected by the insecticide treatment; however, average seed predation of common lambsquarters was lower in both the Bt corn (11.9%) and insecticide-treated plots (11.8%) compared with control plots (17.5%) that did not receive any insecticide. Seed predation of common lambsquarters was not affected by the vertebrate exclosure. Lower seed predation in the transgenic Bt corn and insecticide treatments was likely due to nontarget effects on carabids (Coleoptera: Carabidae). Although the reduction in seed predation was modest and limited to only one of the three weed species tested, our results highlight the need for greater risk assessment that includes the ecosystem service of weed seed predation when considering insect pest management options.

1996 ◽  
Vol 10 (1) ◽  
pp. 127-133 ◽  
Author(s):  
Chae Soon Kwon ◽  
Donald Penner

Greenhouse studies showed that the mixed function oxidase inhibitor, piperonyl butoxide (PBO), tank-mixed with the sulfonylurea herbicides, nicosulfuron, primisulfuron, and thifensulfuron, in the absence of effective adjuvants enhanced herbicide activity on both broadleaf and grass weed species. Effective adjuvants for nicosulfuron were K-3000 for common lambsquarters, Sylgard® 309 Surfactant for velvetleaf, K-2000 for barnyardgrass, and K-2000, K-3000, and Scoil® methylated seed oil for giant foxtail control. K-3000 and Sylgard 309 enhanced velvetleaf control with primisulfuron and thifensulfuron. The 28% urea and ammonium nitrate (UAN) was more effective as an adjuvant with thifensulfuron for velvetleaf than for common lambsquarters control. The enhancement of sulfonylurea herbicide activity with PBO was most apparent when other adjuvants were least effective.


2019 ◽  
Vol 19 (2) ◽  
Author(s):  
Alexandre M M C Loureiro ◽  
G Christopher Cutler ◽  
Vilis O Nams ◽  
Scott N White

Abstract Poecilus lucublandus (Say), Pterostichus mutus (Say), and Harpalus rufipes (De Geer) are abundant Carabidae in lowbush blueberry fields and may contribute to weed seed predation. We used laboratory no-choice test experiments to determine if these beetles feed on seeds of hair fescue (Festuca filiformis Pourr., Poales: Poaceae), poverty oatgrass (Danthonia spicata L.), and red sorrel (Rumex acetosella L., Caryophyllales: Polygonaceae), which are common weeds in lowbush blueberry (Vaccinium angustifolium Ait., Ericales: Ericaceae) fields. Poecilus lucublandus and P. mutus did not feed on seeds of the test weed species, but H. rufipes consumed on average over 30 seeds of each species. There are other weed seeds in blueberry fields that could be palatable to P. lucublandus and P. mutus, which warrants further research on the granivory potential of these important carabid species.


Weed Science ◽  
2016 ◽  
Vol 64 (1) ◽  
pp. 112-118 ◽  
Author(s):  
Erin C. Hill ◽  
Karen A. Renner ◽  
Mark J. VanGessel ◽  
Robin R. Bellinder ◽  
Barbara A. Scott

Integrated weed management (IWM) for agronomic and vegetable production systems utilizes all available options to effectively manage weeds. Late-season weed control measures are often needed to improve crop harvest and stop additions to the weed seed bank. Eliminating the production of viable weed seeds is one of the key IWM practices. The objective of this research was to determine how termination method and timing influence viable weed seed production of late-season weed infestations. Research was conducted in Delaware, Michigan, and New York over a 2-yr period. The weeds studied included: common lambsquarters, common ragweed, giant foxtail, jimsonweed, and velvetleaf. Three termination methods were imposed: cutting at the plant base (simulating hand hoeing), chopping (simulating mowing), and applying glyphosate. The three termination timings were flowering, immature seeds present, and mature seeds present. Following termination, plants were stored in the field in mesh bags until mid-Fall when seeds were counted and tested for viability. Termination timing influenced viable seed development; however, termination method did not. Common ragweed and giant foxtail produced viable seeds when terminated at the time of flowering. All species produced some viable seed when immature seeds were present at the time of termination. The time of viable seed formation varied based on species and site-year, ranging from plants terminated the day of flowering to 1,337 growing degree d after flowering (base 10, 0 to 57 calendar d). Viable seed production was reduced by 64 to 100% when common lambsquarters, giant foxtail, jimsonweed, and velvetleaf were terminated with immature seeds present, compared to when plants were terminated with some mature seeds present. Our results suggest that terminating common lambsquarters, common ragweed, and giant foxtail prior to flowering, and velvetleaf and jimsonweed less than 2 and 3 wk after flowering, respectively, greatly reduces weed seed bank inputs.


Weed Science ◽  
1979 ◽  
Vol 27 (1) ◽  
pp. 7-10 ◽  
Author(s):  
R. B. Taylorson

AbstractGermination of seeds of 10 grass and 33 broadleaved weed species was examined for response to ethylene. Germination was promoted in nine species, inhibited in two, and not affected in the remainder. Of the species promoted, common purslane (Portulaca oleraceaL.), common lambsquarters (Chenopodium albumL.), and several Amaranths, including redroot pigweed (Amaranthus retroflexusL.), were affected most. Transformation of phytochrome to the active form (Pfr) gave interactions that ranged from none to syntergistic with the applied ethylene. In subsequent tests seeds of purslane, redroot pigweed, and giant foxtail (Setaria faberiHerrm.), a species not responsive to ethylene, were examined for germination response to 14 low molecular weight hydrocarbon gases other than ethylene. Some stimulation by the olefins propylene and propadiene was found for purslane and pigweed. Propionaldehyde and butyraldehyde were slightly stimulatory to purslane only.


Weed Science ◽  
2016 ◽  
Vol 64 (1) ◽  
pp. 80-86 ◽  
Author(s):  
Carmen K. Blubaugh ◽  
Ian Kaplan

Weeds are selected to produce overwhelming propagule pressure, and while vertebrate and invertebrate seed predators destroy a large percentage of seeds, their ecosystem services may not be sufficient to overcome germination site limitations. Cover crops are suggested to facilitate seed predation, but it is difficult to disentangle reductions in weed recruitment attributable to granivores from those due to plant competition. Using common lambsquarters as a focal weed species, we used experimental seed subsidies and differential seed predator exclusion to evaluate the utility of vertebrate and invertebrate seed predators in fallow, killed cover crop, and living mulch systems. Over two growing seasons, we found that seed predators were responsible for a 38% reduction in seedling emergence and 81% reduction in weed biomass in fallow plots following simulated seed rain, suggesting that granivory indeed overcomes safe-site limitation and suppresses weeds. However, the common lambsquarters densities in ambient seedbanks across fallow and cover crop treatments were high, and seed predators did not impact their abundance. Across the study, we found either neutral or negative effects of vertebrate seed predators on seed predation, suggesting that invertebrate seed predators contribute most to common lamnsquarters regulation in our system. These results imply that weed seed biocontrol by invertebrates can reduce propagule pressure initially following senescence, but other tools must be leveraged for long-term seedbank management.


Weed Science ◽  
1997 ◽  
Vol 45 (3) ◽  
pp. 378-381 ◽  
Author(s):  
Gregory J. Steckel ◽  
Stephen E. Hart ◽  
Loyd M. Wax

Greenhouse and laboratory experiments were conducted to evaluate foliar absorption, translocation, and efficacy of glufosinate on four weed species. The rate of glufosinate required to reduce shoot dry weight by 50% (GR50) varied between weed species. GR50values for giant foxtail, barnyardgrass, velvetleaf, and common lambsquarters were 69, 186, 199, and 235 g ai ha−1, respectively. Absorption of14C-glufosinate increased with time and reached a plateau 24 hours after treatment (HAT). Absorption of14C-glufosinate was 67, 53, 42, and 16% for giant foxtail, barnyardgrass, velvetleaf, and common lambsquarters, respectively. Translocation of absorbed14C-glufosinate from the treated leaf was greatest for giant foxtail and barnyardgrass (15 and 14% 24 HAT of absorbed14C-glufosinate, respectively). This compared to 5 and < 1% for translocation of absorbed14C-glufosinate from the treated leaves of velvetleaf and common lambsquarters. The majority of14C-glufosinate translocated by giant foxtail and barnyardgrass was found below the treated leaf and in the roots, indicating phloem mobility of the herbicide. Differential absorption and translocation of14C-glufosinate may be contributing factors to the differential sensitivity observed between weed species.


Weed Science ◽  
1997 ◽  
Vol 45 (1) ◽  
pp. 54-60 ◽  
Author(s):  
Dawit Mulugeta ◽  
David E. Stoltenberg

Field experiments were conducted in 1992 and 1993 to characterize the weed seed bank, to determine the influence of moldboard plowing and secondary soil disturbance on the emergence pattern of weeds, and to measure weed seed bank depletion by emergence in a long-term moldboard plow corn cropping system. Viable seeds of common lambsquarters, redroot pigweed, and each of 10 other species accounted for about 85, about 9, and less than 1%, respectively, of the total weed species in the seed bank. A negative binomial distribution described the spatial distribution of viable seeds of 10 species, but not of common lambsquarters or of redroot pigweed. Decreased density of seeds among species was associated with increased aggregation. Secondary soil disturbance increased the rate and magnitude of common lambs quarters emergence in 1992 but did not influence emergence in 1993. Secondary soil disturbance did not influence the magnitude and rate of emergence of redroot pigweed or velvetleaf. Whereas cumulative growing degree days from April through July were similar between years, the amount of rainfall was about 50% less in 1992 than in 1993. Secondary soil disturbance may have increased common lambsquarters emergence by increasing the availability of soil moisture and improving conditions for seed germination during the dry year. Even though seed bank depletion by seedling emergence was relatively low for all species, secondary soil disturbance in creased seed bank depletion of common lambsquarters and redroot pigweed about 7- and 3-fold, respectively, in 1992. Seasonal variation in the amount of rainfall may have influenced the effect of soil disturbance on emergence and seed bank depletion of common lambsquarters, which is the most abundant species in the weed community.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Clement Akotsen-Mensah ◽  
Isaac N. Ativor ◽  
Roger S. Anderson ◽  
Kwame Afreh-Nuamah ◽  
Collison F. Brentu ◽  
...  

Abstract Mango farmers in Ghana are confronted with many pest problems like fruit flies, Sternochetus mangiferae (F.), and mealy bugs. Different pest management options are available to mango farmers; however, the extent to which they apply the available pest management options is not well known. A survey was conducted among 60 farmers in southeastern Ghana, from October–December 2015 mango season, to find out the level of knowledge and practice of insect pest management used by mango farmers. The results showed that most farmers use conventional insecticides to control insect pests in mango. Majority of the farmers (30%) use a composite insecticide (Cydim super; 36 g cypermethrin + 400 g dimethoate per liter), whereas 3.3% use Pyrinex (chlorpyrifos 480 g/liter). Majority of insecticides used belong to WHO category II. Ninety percent (90%) of the farmers use cultural practices and pheromone traps. Pheromone traps are, however, used for fruit flies but not for S. mangiferae. Over 80% of the respondents who used pesticides to control pests have also adopted GLOBALGAP standards for certification. The results are discussed based on the importance of adoption of IPM strategies in mango production and the possible reduction of fruit rejection during mango export in Ghana.


Weed Science ◽  
2004 ◽  
Vol 52 (6) ◽  
pp. 913-919 ◽  
Author(s):  
Matthew W. Myers ◽  
William S. Curran ◽  
Mark J. VanGessel ◽  
Dennis D. Calvin ◽  
David A. Mortensen ◽  
...  

A 2-yr experiment assessed the potential for using soil degree days (DD) to predict cumulative weed emergence. Emerged weeds, by species, were monitored every 2 wk in undisturbed plots. Soil DD were calculated at each location using a base temperature of 9 C. Weed emergence was fit with logistic regression for common ragweed, common lambsquarters, velvetleaf, giant foxtail, yellow foxtail, large crabgrass, smooth pigweed, and eastern black nightshade. Coefficients of determination for the logistic models fit to the field data ranged between 0.90 and 0.95 for the eight weed species. Common ragweed and common lambsquarters were among the earliest species to emerge, reaching 10% emergence before 150 DD. Velvetleaf, giant foxtail, and yellow foxtail were next, completing 10% emergence by 180 DD. The last weeds to emerge were large crabgrass, smooth pigweed, and eastern black nightshade, which emerged after 280 DD. The developed models were verified by predicting cumulative weed emergence in adjacent plots. The coefficients of determination for the model verification plots ranged from 0.66 to 0.99 and averaged 0.90 across all eight weed species. These results suggest that soil DD are good predictors for weed emergence. Forecasting weed emergence will help growers make better crop and weed management decisions.


1999 ◽  
Vol 13 (3) ◽  
pp. 542-547 ◽  
Author(s):  
Brent E. Tharp ◽  
Oliver Schabenberger ◽  
James J. Kells

The recent introduction of glufosinate-resistant and glyphosate-resistant crops provides growers with new options for weed management. Information is needed to compare the effectiveness of glufosinate and glyphosate on annual weeds. Greenhouse trials were conducted to determine the response of barnyardgrass (Echinochloa crus-galli), common lambsquarters (Chenopodium album), common ragweed (Ambrosia artemisiifolia), fall panicum (Panicum dichotomiflorum), giant foxtail (Setaria faberi), large crabgrass (Digitaria sanguinalis), and velvetleaf (Abutilon theophrasti) to glufosinate and glyphosate. The response of velvetleaf and common lambsquarters was investigated at multiple stages of growth. Glufosinate and glyphosate were applied to each weed species at logarithmically incremented rates. The glufosinate and glyphosate rates that provided a 50% reduction in aboveground weed biomass, commonly referred to as GR50values, were compared using nonlinear regression techniques. Barnyardgrass, common ragweed, fall panicum, giant foxtail, and large crabgrass responded similarly to glufosinate and glyphosate. Common lambsquarters 4 to 8 cm in height was more sensitive to glufosinate than glyphosate. In contrast, 15- to 20-cm tall-velvetleaf was more sensitive to glyphosate than glufosinate.


Sign in / Sign up

Export Citation Format

Share Document