EXPERIMENTAL STUDY OF A LOOP HEAT PIPE SYSTEM FOR AUTOMOTIVE EXHAUST GAS HEAT RECOVERY

Author(s):  
Benjamin Reul ◽  
Tobias Düpmeier ◽  
Peter Stephan
2008 ◽  
Author(s):  
Shiro Ueno ◽  
Dmitry Khrustalev ◽  
Peter Cologer ◽  
Russ Snyder

2017 ◽  
Vol 117 ◽  
pp. 782-798 ◽  
Author(s):  
Xianbing Ji ◽  
Ye Wang ◽  
Jinliang Xu ◽  
Yanping Huang

2014 ◽  
Vol 61 ◽  
pp. 2141-2144 ◽  
Author(s):  
Ye Yuan ◽  
Yiji Lu ◽  
Huashan Bao ◽  
Yaodong Wang ◽  
Wen Wang ◽  
...  

Author(s):  
Michael Ozeh ◽  
A. G. Agwu Nnanna

Powering small electronics like mobile devices off-grid has remained a challenge; hence, there exists a need for an alternate source of powering these devices. This paper examines the efficacy of a novel nanoparticle-immobilized polyethylene wick in maintaining sufficient thermal gradient across a thermoelectric generator to power these devices with energy from waste heat. The work examines several other heat exchangers including heat pipes and loop heat pipe setups. The experimental evidence reveals that the nanoparticle-immobilized polyethylene wick is capable of generating sufficient thermal potential resulting in 5V, which is the minimum voltage required to power small mobile devices. In the opinion of the authors, this is the first ever recorded account of utilizing waste heat to generate enough voltage to power a mobile device. Experiment demonstrated that the nanoparticle-immobilized polyethylene wick showed over 40% thermoelectric voltage generation increment over a plain polyethylene wick and a metal wick in a loop heat pipe setup.


2016 ◽  
Vol 139 (1) ◽  
Author(s):  
Brian Reding ◽  
Yiding Cao

Heat pipe technology offers a possible cooling technique for structures exposed to high heat fluxes, as in turbomachinery such as compressors and turbines. However, in its current configuration as single heat pipes, implementation of the technology is limited due to the difficulties in manufacturability and costs. Hence, a study to develop a new radially rotating (RR) heat pipe system was undertaken, which integrates multiple RR heat pipes with a common reservoir and interconnected braches for a more effective and practical solution to turbomachinery cooling. Experimental study has shown that the integration of multiple heat pipe branches with a reservoir at the top is feasible.


Author(s):  
Changwu Xiong ◽  
Lizhan Bai ◽  
Hechao Li ◽  
Yuandong Guo ◽  
Yating Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document