Heat Flux Transducers in Studies of Heat-resistant Properties of Materials: on the Correctness of Readings

1997 ◽  
Vol 28 (7-8) ◽  
pp. 494-498
Author(s):  
T. G. Grishchenko ◽  
L. V. Dekesha ◽  
T. V. Mendeleeva
Author(s):  
G. Peillex ◽  
P. Le Tallec ◽  
F. Dambakizi

During friction under shock conditions, interface is submitted to very strong heat flux. Thus, it may reach a temperature as high as melt temperature of one of the materials constituting the contact. As a consequence, the income and outcome of heat at the interface governs the friction and the contact behavior. This article exposes a model that resolves the non-linear heat equation in the vicinity of the interface. This way, it takes into account the variations of thermal properties of materials constituting the interface. First results indicate that such variations influence the tribological behavior of the contact.


2012 ◽  
Vol 16 (1) ◽  
pp. 69-78 ◽  
Author(s):  
Haiming Huang ◽  
Xu Xiaoliang ◽  
Guo Huang ◽  
Zimao Zhang

A model is developed for analyzing the thermal response of the heat-resistant layer composed of high silica fiber reinforced phenolic matrix composites(SiO2/P) and aluminum, in which pyrolysis and phase transitions are exsited, such as melt, vaporization and sublimation. Based on this model, the thermal response of the heat-resistant layer with different SiO2/P thickness is calculated under a heat flux by using FORTRAN codes. As indicated in the results, the slope of temperature gets a sudden decline at the pyrolysis interface, which is due to the latent heat of pyrolysis; the thickness of heat-resistant layer has little influence on the heating-surface temperature, however, the back temperature may increase with the decreasing thickness; and the thermal conductivity of carbonized layer is very important to thermal response.


1994 ◽  
Vol 144 ◽  
pp. 185-187
Author(s):  
S. Orlando ◽  
G. Peres ◽  
S. Serio

AbstractWe have developed a detailed siphon flow model for coronal loops. We find scaling laws relating the characteristic parameters of the loop, explore systematically the space of solutions and show that supersonic flows are impossible for realistic values of heat flux at the base of the upflowing leg.


Author(s):  
L.E. Murr

Ledges in grain boundaries can be identified by their characteristic contrast features (straight, black-white lines) distinct from those of lattice dislocations, for example1,2 [see Fig. 1(a) and (b)]. Simple contrast rules as pointed out by Murr and Venkatesh2, can be established so that ledges may be recognized with come confidence, and the number of ledges per unit length of grain boundary (referred to as the ledge density, m) measured by direct observations in the transmission electron microscope. Such measurements can then give rise to quantitative data which can be used to provide evidence for the influence of ledges on the physical and mechanical properties of materials.It has been shown that ledge density can be systematically altered in some metals by thermo-mechanical treatment3,4.


Author(s):  
W.R. Bottoms ◽  
G.B. Haydon

There is great interest in improving the brightness of electron sources and therefore the ability of electron optical instrumentation to probe the properties of materials. Extensive work by Dr. Crew and others has provided extremely high brightness sources for certain kinds of analytical problems but which pose serious difficulties in other problems. These sources cannot survive in conventional system vacuums. If one wishes to gather information from the other signal channels activated by electron beam bombardment it is necessary to provide sufficient current to allow an acceptable signal-to-noise ratio. It is possible through careful design to provide a high brightness field emission source which has the capability of providing high currents as well as high current densities to a specimen. In this paper we describe an electrode to provide long-lived stable current in field emission sources.The source geometry was based upon the results of extensive computer modeling. The design attempted to maximize the total current available at a specimen.


Author(s):  
Yeshayahu Talmon

To bring out details in the fractured surface of a frozen sample in the freeze fracture/freeze-etch technique,the sample or part of it is warmed to enhance water sublimation.One way to do this is to raise the temperature of the entire sample to about -100°C to -90°C. In this case sublimation rates can be calculated by using plots such as Fig.1 (Talmon and Thomas),or by simplified formulae such as that given by Menold and Liittge. To achieve higher rates of sublimation without heating the entire sample a radiative heater can be used (Echlin et al.). In the present paper a simplified method for the calculation of the rates of sublimation under a constant heat flux F [W/m2] at the surface of the sample from a heater placed directly above the sample is described.


2020 ◽  
Vol 117 (6) ◽  
pp. 602
Author(s):  
Heping Liu ◽  
Jianjun Zhang ◽  
Hongbiao Tao ◽  
Hui Zhang

In this article, based on the actual monitored temperature data from mold copper plate with a dense thermocouple layout and the measured magnetic flux density values in a CSP thin-slab mold, the local heat flux and thin-slab solidification features in the funnel-type mold with electromagnetic braking are analyzed. The differences of local heat flux, fluid flow and solidified shell growth features between two steel grades of Q235B with carbon content of 0.19%C and DC01 of 0.03%C under varying operation conditions are discussed. The results show the maximum transverse local heat flux is near the meniscus region of over 0.3 m away from the center of the wide face, which corresponds to the upper flow circulation and the large turbulent kinetic energy in a CSP funnel-type mold. The increased slab width and low casting speed can reduce the fluctuation of the transverse local heat flux near the meniscus. There is a decreased transverse local heat flux in the center of the wide face after the solidified shell is pulled through the transition zone from the funnel-curve to the parallel-cure zone. In order to achieve similar metallurgical effects, the braking strength should increase with the increase of casting speed and slab width. Using the strong EMBr field in a lower casting speed might reverse the desired effects. There exist some differences of solidified shell thinning features for different steel grades in the range of the funnel opening region under the measured operating conditions, which may affect the optimization of the casting process in a CSP caster.


Sign in / Sign up

Export Citation Format

Share Document