TWO-FLUID MODEL SIMULATION OF TWO-PHASE FLOW PROBLEMS USING A CONSERVATIVE FINITE-VOLUME METHOD

Author(s):  
M. Scheuerer ◽  
G. Scheuerer
Author(s):  
Moon-Sun Chung ◽  
Jong-Won Kim

In this study, two-phase flow problems are numerically solved in two dimensions using a two-fluid model. This model includes the surface-tension terms incorporated in the momentum equations. Then the governing equations become hyperbolic type for which the upwind method like flux vector splitting (FVS) avails. For numerical tests, two-phase shock tube problem is solved to show the wave propagation characteristics. Cavity growth on the surface of a hemisphere headform is also calculated as a feasibility study. Advantages and capability of the present method are discussed in some detail.


2021 ◽  
Vol 33 (3) ◽  
pp. 033324
Author(s):  
Alejandro Clausse ◽  
Martín López de Bertodano

Author(s):  
David Heinze ◽  
Thomas Schulenberg ◽  
Lars Behnke

A simulation model for the direct contact condensation of steam in subcooled water is presented that allows determination of major parameters of the process, such as the jet penetration length. Entrainment of water by the steam jet is modeled based on the Kelvin–Helmholtz and Rayleigh–Taylor instability theories. Primary atomization due to acceleration of interfacial waves and secondary atomization due to aerodynamic forces account for the initial size of entrained droplets. The resulting steam-water two-phase flow is simulated based on a one-dimensional two-fluid model. An interfacial area transport equation is used to track changes of the interfacial area density due to droplet entrainment and steam condensation. Interfacial heat and mass transfer rates during condensation are calculated using the two-resistance model. The resulting two-phase flow equations constitute a system of ordinary differential equations, which is solved by means of the explicit Runge–Kutta–Fehlberg algorithm. The simulation results are in good qualitative agreement with published experimental data over a wide range of pool temperatures and mass flow rates.


Author(s):  
Hiroyuki Yoshida ◽  
Takeharu Misawa ◽  
Kazuyuki Takase

Two-fluid model can simulate two phase flow less computational cost than inter-face tracking method and particle interaction method. Therefore, two-fluid model is useful for thermal hydraulic analysis in large-scale domain such as a rod bundle. Japan Atomic Energy Agency (JAEA) develops three dimensional two-fluid model analysis code ACE-3D, which adopts boundary fitted coordinate system in order to simulate complex shape channel flow. In this paper, boiling two-phase flow analysis in a tight lattice rod bundle is performed by ACE-3D code. The parallel computation using 126CPUs is applied to this analysis. In the results, the void fraction, which distributes in outermost region of rod bundle, is lower than that in center region of rod bundle. At height z = 0.5 m, void fraction in the gap region is higher in comparison with that in center region of the subchannel. However, at height of z = 1.1m, higher void fraction distribution exists in center region of the subchannel in comparison with the gap region. The tendency of void fraction to concentrate in the gap region at vicinity of boiling starting point, and to move into subchannel as water goes through rod bundle, is qualitatively agreement with the measurement results by neutron radiography. To evaluate effects of two-phase flow model used in ACE-3D code, numerical simulation of boiling two-phase in tight lattice rod bundle with no lift force model (neglecting lift force acting on bubbles) is also performed. From the comparison of numerical results, it is concluded that the effects of lift force model are not so large on overall void fraction distribution in tight lattice rod bundle. However, higher void fraction distribution in center region of the subchannel was not observed in this simulation. It is concluded that the lift force model is important for local void fraction distribution in rod bundles.


Author(s):  
Youn-Gyu Jung ◽  
Moon-Sun Chung ◽  
Sung-Jae Yi

This study discusses on the implementation of an upwind method for a one-dimensional two-fluid model including the surface tension effect in the momentum equations. This model consists of a complete set of six equations including two-mass, two-momentum, and two-internal energy conservation equations having all real eigenvalues. Based on this equation system with upwind numerical method, the present authors first make a pilot code and then solve some benchmark problems to verify whether this model and numerical method is able to properly solve some fundamental one-dimensional two-phase flow problems or not.


Author(s):  
Yoshiteru Komuro ◽  
Atsushi Kodama ◽  
Yoshiyuki Kondo ◽  
Koichi Tanimoto ◽  
Takashi Hibiki

Abstract Two-phase flows are observed in various industrial plants and piping systems. Understanding two-phase flow behaviors such as flow patterns and unsteady void fraction in horizontal and vertical pipes are crucial in improving plant safety. Notably, the flow patterns observed in a large diameter pipe (approx. 4–6 in or larger) are significantly different from those observed in a medium diameter pipe. In a vertical large diameter pipe, no slug flow is observed due to the instantaneous slug bubble breakup caused by the surface instability. Besides, in a horizontal pipe, flow regime transition from stratification of liquid and gas to slug (plug) flow that induces unsteady flow should be taken into account. From this viewpoint, it is necessary to predict the flow regime in horizontal and vertical large diameter pipes with some elbows and to evaluate the unsteady flow regime. In this study, the simulation method based on the two-fluid model is developed. The two-fluid model is considered the most accurate model because the governing equations for mass, momentum, and energy transfer are formulated for each phase. When using the two-fluid model, some constitutive equations should be given in computing the momentum transfer between gas and liquid phases. In this study, several state-of-art constitutive equations of the bubble diameter, the interfacial drag force and non-drag forces such as the lift force and the bubble-bubble collision force, are implemented in the platform of ANSYS FLUENT. The developed simulation method is validated with visualization results and force from an air-water flow at the elbow of the piping system.


2020 ◽  
Vol 72 (10) ◽  
pp. 1303-1309
Author(s):  
Wenbin Gao ◽  
Weifeng Huang ◽  
Tao Wang ◽  
Ying Liu ◽  
Zhihao Wang ◽  
...  

Purpose By modeling and analyzing the two-phase mechanical seal of the fan-shaped groove end face, which is prone to phase change, an effective method to study the flow field of the mechanical seal when both cavitation and boiling exist simultaneously is found. Design/methodology/approach Based on the finite volume method, a fluid model was developed to investigate a two-phase mechanical seal. The validity of the proposed model was verified by comparing with some classical models. Findings By modeling and analyzing the two-phase mechanical seal of the fan-shaped groove end face, which is prone to phase change, the analysis of the gap flow field of the mechanical seal was realized when cavitation and boiling existed simultaneously. Originality/value Based on the model proposed for different conditions, the pressure and phase states in the shallow groove sealing gap were compared. The phase change rate between the mechanical seal faces was also investigated. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2019-0537/


Sign in / Sign up

Export Citation Format

Share Document