Thermal Barrier Coatings for the Protection of Coal Fired Gas Turbines

Author(s):  
E. Shvarzshtein ◽  
Y. Goldman ◽  
Y. M. Timnat
2021 ◽  
Vol 3 (1) ◽  
pp. 63-67
Author(s):  
Esmaeil Poursaeidi ◽  
◽  
Farzam Montakhabi ◽  
Javad Rahimi ◽  
◽  
...  

The constant need to use gas turbines has led to the need to increase turbines' inlet temperature. When the temperature reaches a level higher than the material's tolerance, phenomena such as creep, changes in mechanical properties, oxidation, and corrosion occur at high speeds, which affects the life of the metal material. Nowadays, operation at high temperatures is made possible by proceedings such as cooling and thermal insulation by thermal barrier coatings (TBCs). The method of applying thermal barrier coatings on the turbine blade creates residual stresses. In this study, residual stresses in thermal barrier coatings applied by APS and HVOF methods are compared by Tsui–Clyne analytical model and XRD test. The analytical model results are in good agreement with the experimental results (between 2 and 8% error), and the HVOF spray method creates less residual stress than APS. In the end, an optimal thickness for the coating is calculated to minimize residual stress at the interface between the bond coat and top coat layers.


Author(s):  
J. Wigren ◽  
J.-F. de Vries ◽  
D. Greving

Abstract Thermal barrier coatings are used in the aerospace industry for thermal insulation in hot sections of gas turbines. Improved coating reliability is a common goal among jet engine designers. In-service failures, such as coating cracking and spallation, result in decreased engine performance and costly maintenance time. A research program was conducted to evaluate residual stresses, microstructure, and thermal shock life of thermal barrier coatings produced from different powder types and spray parameters. Sixteen coatings were ranked according to their performance relative to the other coatings in each evaluation category. Comparisons of residual stresses, powder morphology, and microstructure to thermal shock life indicate a strong correlation to thermal barrier coating performance. Results from these evaluations will aid in the selection of an optimum thermal barrier coating system for turbine engine applications.


Author(s):  
I. G. Wright ◽  
B. A. Pint

Thermal barrier coatings are intended to work in conjunction with internal cooling schemes to reduce the metal temperature of critical hot gas path components in gas turbine engines. The thermal resistance is typically provided by a 100-250 μm thick layer of ceramic (most usually zirconia stabilized with an addition of 7–8 wt% of yttria), and this is deposited on to an approximately 50 μ thick, metallic bond coating that is intended to anchor the ceramic to the metallic surface, to provide some degree of mechanical compliance, and to act as a reservoir of protective scale-forming elements (Al) to protect the underlying superalloy from high-temperature corrosion. A feature of importance to the durability of thermal barrier coatings is the early establishment of a continuous, protective oxide layer (preferably α-alumina) at the bond coating—ceramic interface. Because zirconia is permeable to oxygen, this oxide layer continues to grow during service. Some superalloys are inherently resistant to high-temperature oxidation, so a separate bond coating may not be needed in those cases. Thermal barrier coatings have been in service in aeroengines for a number of years, and the use of this technology for increasing the durability and/or efficiency of industrial gas turbines is currently of significant interest. The data presented were taken from an investigation of routes to optimize bond coating performance, and the focus of the paper is on the influences of reactive elements and Pt on the oxidation behaviour of NiAl-based alloys determined in studies using cast versions of bond coating compositions.


Author(s):  
Robert Eriksson ◽  
Zhe Chen ◽  
Krishna Praveen Jonnalagadda

Thermal barrier coatings (TBCs) are ceramic coatings used in gas turbines to lower the base metal temperature. During operation, the TBC may fail through, for example, fatigue. In this study, a TBC system deposited on a Ni-base alloy was tested in tensile bending fatigue. The TBC system was tested as-sprayed and oxidized, and two load levels were used. After interrupting the tests, at 10,000–50,000 cycles, the TBC tested at the lower load had extensive delamination damage, whereas the TBC tested at the higher load was relatively undamaged. At the higher load, the TBC formed vertical cracks which relieved the stresses in the TBC and retarded delamination damage. A finite element (FE) analysis was used to establish a likely vertical crack configuration (spacing and depth), and it could be confirmed that the corresponding stress drop in the TBC should prohibit delamination damage at the higher load.


2002 ◽  
Vol 2002.2 (0) ◽  
pp. 219-220
Author(s):  
Masato NAKAYAMA ◽  
Tooru HISAMATSU ◽  
Taiji TORIGOE ◽  
Tsuneji KAMEDA ◽  
Hideyuki ARIKAWA ◽  
...  

Author(s):  
J. P. Feist ◽  
P. Y. Sollazzo ◽  
S. Berthier ◽  
B. Charnley ◽  
J. Wells

Thermal barrier coatings are used to reduce the actual working temperature of the high pressure turbine blade metal surface and hence permit the engine to operate at higher more efficient temperatures. Sensor coatings are an adaptation of existing thermal barrier coatings to enhance their functionality, such that they not only protect engine components from the high temperature gas, but can also measure the material temperature accurately and determine the health of the coating e.g. ageing, erosion and corrosion. The sensing capability is introduced by embedding optically active materials into the thermal barrier coatings and by illuminating these coatings with excitation light phosphorescence can be observed. The phosphorescence carries temperature and structural information about the coating. Accurate temperature measurements in the engine hot section would eliminate some of the conservative margins which currently need to be imposed to permit safe operation. A 50K underestimation at high operating temperatures can lead to significant pre-mature failure of the protective coating and loss of integrity. Knowledge of the exact temperature could enable the adaptation of the most efficient coating strategies using the minimum amount of air. The integration of an on-line temperature detection system would enable the full potential of thermal barrier coatings to be realised due to improved accuracy in temperature measurement and early warning of degradation. This in turn will increase fuel efficiency and reduce CO2 emissions. Application: This paper describes the implementation of a sensor coating system on a Rolls-Royce jet engine. The system consists of three components: industrially manufactured robust coatings, advanced remote detection optics and improved control and readout software. The majority of coatings were based on yttria stabilized zirconia doped with Dy (dysprosium) and Eu (europium), although other coatings made of yttrium aluminium garnet were manufactured as well. Coatings were produced on a production line using atmospheric plasma spraying. Parallel tests at Didcot power station revealed survivability of specific coatings in excess of 4,500 effective operating hours. It is deduced that the capability of these coatings is in the range of normal maintenance schedules of industrial gas turbines of 24,000 hours or even longer. An advanced optical system was designed and manufactured permitting easy scanning of coated components and also the detection of phosphorescence on rotating turbine blades (13k RPM) at stand-off distances of up to 400mm. Successful temperature measurements were taken from the nozzle guide vanes (hot), the combustion chamber (noisy) and the rotating turbine blades (moving) and compared with thermocouple and pyrometer installations for validation purposes.


2012 ◽  
Vol 433-440 ◽  
pp. 315-318
Author(s):  
Seyid Fehmi Diltemiz ◽  
Melih Cemal Kushan

Thermal barrier coatings (TBCs) have been widely used by aero and land based gas turbines to protect hot section parts from oxidation and thermal loads. These coatings are generally consisting of multiple layers of coating (usually two) with each layer having a specific function. TBCs are generally deposited with air plasma spray (APS) or electron beam physical vapor deposition (EB-PVD) techniques. In this paper plasma sprayed TBCs were deposited on to 304 stainless steel substrates then ceramic surfaces were glazing with Nd-YAG laser. Metallographic examinations were applied to the samples to investigate microstructural changes in glazed ceramic layer. Both glazed and as-coated samples were subjected to oxidation tests to measure the high temperature oxidation resistance. The tests showed that, laser glazing is beneficial to oxidation resistance of TBCs. This improvement is attributed to sintering of zirconia layer which act as oxygen barrier and formed during glazing process.


2007 ◽  
Vol 333 ◽  
pp. 137-146 ◽  
Author(s):  
Bilge Saruhan ◽  
Uwe Schulz ◽  
Marion Bartsch

Partially Yttria Stabilized Zirconia (PYSZ) based Thermal Barrier Coatings (TBC) manufactured by EB-PVD process are a crucial part of a system, which protects the turbine blades situated at the high pressure sector of aero engines and stationary gas turbines under severe service conditions. These materials show a high strain tolerance relying on their unique coating morphology, which is represented by weakly bonded columns. The porosity present in ceramic top coats affects the thermal conductivity by reducing the cross sectional area through which the heat flows. The increase in thermal conductivity after heat-treatment relates to the alteration of the shape of the pores rather than the reduction of their surface-area at the cross section. The studies carried out by the authors demonstrate that the variation of the parameters during the EB-PVD processing of PYSZ based top-coats alters the columnar morphology of the coatings. Consequently, these morphological changes affect primarily the thermal conductivity and eventually the Young’ Modulus which are the key physical properties of this material group. New ceramic compositions covering zirconia coatings stabilized with alternative oxides, pyrochlores and hexaluminates are addressed. Failures occurring in ceramic top coats mark the lifetime of TBC system and therefore, it is necessary that their performance should go beyond that of the-state-of-the-art materials. This context summarizes the research and developments devoted to future generation ceramic top coats of EB-PVD TBCs.


Sign in / Sign up

Export Citation Format

Share Document