Bending Fatigue of Thermal Barrier Coatings

Author(s):  
Robert Eriksson ◽  
Zhe Chen ◽  
Krishna Praveen Jonnalagadda

Thermal barrier coatings (TBCs) are ceramic coatings used in gas turbines to lower the base metal temperature. During operation, the TBC may fail through, for example, fatigue. In this study, a TBC system deposited on a Ni-base alloy was tested in tensile bending fatigue. The TBC system was tested as-sprayed and oxidized, and two load levels were used. After interrupting the tests, at 10,000–50,000 cycles, the TBC tested at the lower load had extensive delamination damage, whereas the TBC tested at the higher load was relatively undamaged. At the higher load, the TBC formed vertical cracks which relieved the stresses in the TBC and retarded delamination damage. A finite element (FE) analysis was used to establish a likely vertical crack configuration (spacing and depth), and it could be confirmed that the corresponding stress drop in the TBC should prohibit delamination damage at the higher load.

Author(s):  
Robert Eriksson ◽  
Zhe Chen ◽  
Krishna Praveen Jonnalagadda

Thermal barrier coatings (TBCs) are ceramic coatings used in gas turbines to lower the base metal temperature. During operation, the TBC may fail through, for example, fatigue. In the present study, a TBC system deposited on a Ni-base alloy was tested in tensile bending fatigue. The TBC system was tested as-sprayed and oxidized and two load levels were used. After interrupting the tests, at 10000–50000 cycles, the TBC tested at the lower load had extensive delamination damage whereas the TBC tested at the higher load was relatively undamaged. At the higher load, the TBC formed vertical cracks which relieved the stresses in the TBC and retarded delamination damage. A finite element analysis was used to establish a likely vertical crack configuration (spacing and depth) and it could be confirmed that the corresponding stress drop in the TBC should prohibit delamination damage at the higher load.


Author(s):  
Josh Kimmel ◽  
Zaher Mutasim ◽  
William Brentnall

Thermal barrier coatings (TBCs) provide an alloy surface temperature reduction when applied to turbine component surfaces. Thermal barrier coatings can be used as a tool for the designer to augment the power and/or enhance the efficiency of gas turbine engines. TBCs have been used successfully in the aerospace industry for many years, with only limited use for industrial gas turbine applications. Industrial gas turbines operate for substantially longer cycles and time between overhauls, and thus endurance becomes a critical factor. There are many factors that affect the life of a TBC including the composition and microstructure of the base alloy and bond coating. Alloys such as Mar-M 247, CMSX-4 and CMSX-10 are materials used for high temperature turbine environments, and usually require protective and/or thermal barrier coatings for increased performance. Elements such as hafnium, rhenium, and yttrium have shown considerable improvements in the strength of these alloys. However these elements may result in varying effects on the coatability and environmental performance of these alloys. This paper discusses the effects of these elements on the performance of thermal barrier coatings.


2000 ◽  
Vol 122 (3) ◽  
pp. 393-400 ◽  
Author(s):  
Josh Kimmel ◽  
Zaher Mutasim ◽  
William Brentnall

Thermal barrier coatings (TBCs) provide an alloy surface temperature reduction when applied to turbine component surfaces. Thermal barrier coatings can be used as a tool for the designer to augment the power and/or enhance the efficiency of gas turbine engines. TBCs have been used successfully in the aerospace industry for many years, with only limited use for industrial gas turbine applications. Industrial gas turbines operate for substantially longer cycles and time between overhauls, and thus endurance becomes a critical factor. There are many factors that affect the life of a TBC including the composition and microstructure of the base alloy and bond coating. Alloys such as Mar-M 247, CMSX-4, and CMSX-10 are materials used for high temperature turbine environments, and usually require protective and/or thermal barrier coatings for increased performance. Elements such as hafnium, rhenium, and yttrium have shown considerable improvements in the strength of these alloys. However, these elements may result in varying effects on the coatability and environmental performance of these alloys. This paper discusses the effects of these elements on the performance of thermal barrier coatings. [S0742-4795(00)02603-X]


Author(s):  
Ozer Unal

Interest in ceramics as thermal barrier coatings for hot components of turbine engines has increased rapidly over the last decade. The primary reason for this is the significant reduction in heat load and increased chemical inertness against corrosive species with the ceramic coating materials. Among other candidates, partially-stabilized zirconia is the focus of attention mainly because ot its low thermal conductivity and high thermal expansion coefficient.The coatings were made by Garrett Turbine Engine Company. Ni-base super-alloy was used as the substrate and later a bond-coating with high Al activity was formed over it. The ceramic coatings, with a thickness of about 50 μm, were formed by EB-PVD in a high-vacuum chamber by heating the target material (ZrO2-20 w/0 Y2O3) above its evaporation temperaturef >3500 °C) with a high-energy beam and condensing the resulting vapor onto a rotating heated substrate. A heat treatment in an oxidizing environment was performed later on to form a protective oxide layer to improve the adhesion between the ceramic coating and substrate. Bulk samples were studied by utilizing a Scintag diffractometer and a JEOL JXA-840 SEM; examinations of cross-sectional thin-films of the interface region were performed in a Philips CM 30 TEM operating at 300 kV and for chemical analysis a KEVEX X-ray spectrometer (EDS) was used.


Author(s):  
D. S. Duvall ◽  
D. L. Ruckle

The durability of plasma sprayed ceramic thermal barrier coatings subjected to cyclic thermal environments has been improved substantially by improving the strain tolerance of the ceramic structure and also by controlling the substrate temperature during the application of the coating. Improved strain tolerance was achieved by using ceramic structures with increased porosity, microcracking or segmentation. Plasma spraying on a controlled-temperature substrate also has been shown to improve durability by reducing harmful residual stresses. The most promising of the strain tolerant ceramic coatings have survived up to 6000 cycles of engine endurance testing with no coating or vane platform damage. In side-by-side engine tests, thermal barrier coatings have shown that they greatly reduce platform distress compared to conventionally coated vanes in addition to permitting reductions in cooling air and attendant increases in engine efficiency.


2021 ◽  
Vol 3 (1) ◽  
pp. 63-67
Author(s):  
Esmaeil Poursaeidi ◽  
◽  
Farzam Montakhabi ◽  
Javad Rahimi ◽  
◽  
...  

The constant need to use gas turbines has led to the need to increase turbines' inlet temperature. When the temperature reaches a level higher than the material's tolerance, phenomena such as creep, changes in mechanical properties, oxidation, and corrosion occur at high speeds, which affects the life of the metal material. Nowadays, operation at high temperatures is made possible by proceedings such as cooling and thermal insulation by thermal barrier coatings (TBCs). The method of applying thermal barrier coatings on the turbine blade creates residual stresses. In this study, residual stresses in thermal barrier coatings applied by APS and HVOF methods are compared by Tsui–Clyne analytical model and XRD test. The analytical model results are in good agreement with the experimental results (between 2 and 8% error), and the HVOF spray method creates less residual stress than APS. In the end, an optimal thickness for the coating is calculated to minimize residual stress at the interface between the bond coat and top coat layers.


Author(s):  
Filofteia-Laura Toma ◽  
Julia Sagel ◽  
Christoph Leyens ◽  
Karel Slámečka ◽  
Serhii Tkachenko ◽  
...  

Abstract Intensive R&D work of more than one decade has demonstrated many unique coating properties; particularly for oxide ceramic coatings fabricated by suspension thermal spraying technology. Suspension spraying allows producing yttria-stabilized zirconia (YSZ) thermal barrier coatings (TBC) with columnar microstructure; similar to those produced by electron-beam physical vapor deposition (EB-PVD); and vertically cracked morphologies; with a generally low thermal conductivity. Therefore; suspension sprayed YSZ TBCs are seen as an alternative to EB-PVD coatings and those produced by conventional air plasma spray (APS) processes. Nonetheless; the microstructure of the YSZ topcoat is strongly influenced by the properties of the metallic bondcoat. In this work; direct laser interference patterning (DLIP) was applied to texture the surface topography of Ni-alloy based plasma sprayed bondcoat. Suspension plasma spraying (SPS) was applied to produce YSZ coatings on top of as-sprayed and laser-patterned bondcoat. The samples were characterized in terms of microstructure; phase composition and thermal cycling performance. The influence of the bondcoat topography on the properties of suspension sprayed YSZ coatings is presented and discussed.


Author(s):  
J. Wigren ◽  
J.-F. de Vries ◽  
D. Greving

Abstract Thermal barrier coatings are used in the aerospace industry for thermal insulation in hot sections of gas turbines. Improved coating reliability is a common goal among jet engine designers. In-service failures, such as coating cracking and spallation, result in decreased engine performance and costly maintenance time. A research program was conducted to evaluate residual stresses, microstructure, and thermal shock life of thermal barrier coatings produced from different powder types and spray parameters. Sixteen coatings were ranked according to their performance relative to the other coatings in each evaluation category. Comparisons of residual stresses, powder morphology, and microstructure to thermal shock life indicate a strong correlation to thermal barrier coating performance. Results from these evaluations will aid in the selection of an optimum thermal barrier coating system for turbine engine applications.


2017 ◽  
Vol 62 (3) ◽  
pp. 1433-1437
Author(s):  
A. Jasik

Abstract The paper presents the results of numerical calculations of temperature and thermal stress distribution in thermal barrier coatings deposited by thermal spraying process on the nickel based superalloy. An assumption was made to apply conventional zirconium oxide modified with yttrium oxide (8YSZ) and apply pyrochlore type material with formula La2Zr2O7. The bond coat was made of NiCoCrAlY. Analysis of the distribution of temperature and stresses in ceramic coatings of different thicknesses was performed in the function of bond-coat thickness and the type of ceramic insulation layer. It was revealed that the thickness of NiCrAlY bond-coat has not significant influence on the stress distribution, but there is relatively strong effect on temperature level. The most important factor influenced on stress distribution in TBC system is related with type and properties of ceramic insulation layer.


Author(s):  
I. G. Wright ◽  
B. A. Pint

Thermal barrier coatings are intended to work in conjunction with internal cooling schemes to reduce the metal temperature of critical hot gas path components in gas turbine engines. The thermal resistance is typically provided by a 100-250 μm thick layer of ceramic (most usually zirconia stabilized with an addition of 7–8 wt% of yttria), and this is deposited on to an approximately 50 μ thick, metallic bond coating that is intended to anchor the ceramic to the metallic surface, to provide some degree of mechanical compliance, and to act as a reservoir of protective scale-forming elements (Al) to protect the underlying superalloy from high-temperature corrosion. A feature of importance to the durability of thermal barrier coatings is the early establishment of a continuous, protective oxide layer (preferably α-alumina) at the bond coating—ceramic interface. Because zirconia is permeable to oxygen, this oxide layer continues to grow during service. Some superalloys are inherently resistant to high-temperature oxidation, so a separate bond coating may not be needed in those cases. Thermal barrier coatings have been in service in aeroengines for a number of years, and the use of this technology for increasing the durability and/or efficiency of industrial gas turbines is currently of significant interest. The data presented were taken from an investigation of routes to optimize bond coating performance, and the focus of the paper is on the influences of reactive elements and Pt on the oxidation behaviour of NiAl-based alloys determined in studies using cast versions of bond coating compositions.


Sign in / Sign up

Export Citation Format

Share Document