steel liner
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 10)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Matthew Godfrey ◽  
Roy Baker

Abstract The public domain contains many work efforts that document the advantages of expandable drilling and completions systems within the industry (Filippov 1999, Lohoefer 2000). The ability to place a solid steel liner or patch into a well and transform it by cold working to a larger diameter provides an opportunity to drill deeper while maintaining sufficient wellbore diameter. The use of expandable technology has led to the development of a formable and retractable-segmented cone. The cone supports an expandable system capable of passing through the drift of a base casing that can then result in an expansion providing the equivalent drift diameter. The technology allows the placement of additional liner points in a well that can extend liner lengths as well as isolate sections of open hole that were previously impossible to isolate due to wellbore geometry restriction. There are no limitations on the number of open hole patches installed in a given well which are helpful when wells experience multiple drilling hazards. Each patch can pass through a previously installed patch. The idea of monodiameter expandable liners began in the early 2000s (Dupal 2002, Dean 2003). This paper presents the technical challenges, solutions, and testing of a novel monodiameter system that expands 11-3/4 in. 47 lb/ft pipe which can result in a post-expansion drift diameter of 12-1/4 in. Finite element analysis helped transform the concept from the theoretical system to field execution. The work efforts show the successful testing of the monobore system at surface, and the resulting field trials demonstrate the ability of the technology to fulfil the installation objectives. In addition, the success of the methodology has led to the development of additional monobore system sizes.


2021 ◽  
pp. 204141962110420
Author(s):  
Brian Terranova ◽  
Len Schwer ◽  
Andrew Whittaker

Data from the Tsubota et al. (1993) experiments provided the basis for a numerical study that investigated the impact response of steel-plate lined, reinforced concrete panels using the SPH formulation in LS-DYNA. The simulated tests involved 50 mm (1.97 in), 70 mm (2.76 in), and 90 mm (3.54 in) thick reinforced concrete (RC) panels with steel liners and one 50-mm thick benchmark RC panel. Three of the five panels had a steel liner attached to the back face and one had a steel liner on both faces. The panels were normally impacted by a 39.6 mm (1.56 in) diameter projectile at a velocity of 170 m/s (6693 in/s). Reasonable predictions of observed damage, including perforation, liner fracture or bulging, and concrete scabbing were achieved using the MAT072R3 concrete material model. The effectiveness of adding steel liners to a concrete panel to prevent perforation and scabbing resulting from projectile impact was investigated using the numerical model and MAT072R3. Installing a steel liner on the back face of a panel, with a reinforcement ratio equal to that of the internal reinforcement, is an effective method to mitigate scabbing but has little effect on perforation resistance.


Author(s):  
R. Sundaravadivelu ◽  
S. Sakthivel ◽  
S. Maheswari ◽  
S. M. Madhumathy ◽  
S. Sherlin Prem Nishold

Author(s):  
Sen Chai ◽  
Sanjiang Liu ◽  
Liang Huang ◽  
Yunxi Jiang ◽  
Jianhao Bi ◽  
...  

Abstract Tube trailers assembled with large capacity hoop-wrapped composite cylinder of steel liner (i.e., large capacity type 2 tube (LCT2T)) have shown an increasing trend in China. It is an urgent issue to detect nondestructively the defects of cuts, scratches and voids on the composite overwrap, and corrosion, cracks or other defects on the steel liner during their use and manufacturing processes. In this paper, the double-wall single-image technique of X-ray digital radiography (DR) method was studied for the typical defects on the LCT2T by making specimens of cracks and pitting corrosion on the steel liner, as well as cuts, scratches and void defects on the composite overwrap. The optimal penetration parameter was selected based on the identification of image quality indicators (IQI), and the detection sensitivity of the DR method for the typical defects on the LCT2T was obtained. The results showed that the above-mentioned artificial defects were effectively detected with double-wall single-image technique, and this technique had a higher detection sensitivity to longitudinal defects on the composite overwrap of the LCT2T than that to circumferential defects, as well as the detection sensitivity of steel liner defects was higher than that of composite overwrap defects.


Author(s):  
Xiaoqiang Qin ◽  
Lin Liang ◽  
Xiaobing Zhang ◽  
Guide Deng ◽  
Haifeng Liang

Abstract China is the world’s largest user of compressed natural gas vehicles, with a total of nearly 6 million compressed natural gas (CNG) vehicles. The nominal working pressure of the cylinders used in the CNG vehicles in China is 20 MPa, as a result, CNG vehicles have a short range. In order to improve the range of CNG vehicles, the development of CNG vehicles with higher pressure is promoted by the CNG vehicle industry in China nowadays. In this paper, structural design of a fully-wrapped composite CNG gas cylinder with nominal working pressure of 30 MPa are carried out. The steel liner is made of 4130X seamless steel with design wall thickness of 5.9 mm, and the outer surface of steel liner is wrapped with resin based glass fiber composite material. The fully-wrapped composite adopts mixed fiber winding mode: low-angle helical winding, high-angle helical winding and hoop winding. Stress analysis and autofrettage pressure optimization of the designed composite gas cylinder are carried out with finite element method. The results show that the designed composite gas cylinder meets the requirements of ISO 11439-2013, and the best autofrettage pressure of the gas cylinder is 52 MPa after optimizing the autofrettage pressure.


2019 ◽  
Vol 2019 ◽  
pp. 1-20
Author(s):  
Yi Cheng ◽  
Zhimin Xiao ◽  
Yuan Zhang

Steel-concrete composites are important armor protective materials with the increasing power of precision-guided weapons. In this study, the formula of residual velocity as well as the ratio between residual and initial kinetic energy (Er/E0) for concrete targets with a rear steel liner was derived. By establishing finite element models of steel liner concrete targets through ANSYS/LS-DYNA, the effect of the steel liner layout on the perforation resistance was analyzed for both monolithic and segmented concrete targets, which were compared in terms of projectile kinematics characteristics, projectile energy consumption, and target damages. Four main conclusions were drawn: (1) a residual velocity prediction model of concrete targets with a rear steel liner was accurately proposed for the first time when velocity reduction coefficient η was 0.15 and the derived Er/E0 could be used to evaluate their corresponding perforation resistance; (2) moving back the steel liners enhanced the perforation resistance of both monolithic and segmented targets, but the performance of the latter was inferior to that of the former, which was reduced by 10%–16% under the same conditions; (3) during middle- and low-speed perforations, the projectile impact force was more influenced by the contact stiffness than the impact velocity; and (4) regarding the segmented targets, the perforation resistance of the 2nd target was better than the 1st target, which consumed about 10%–20% more projectile kinetic energy.


2019 ◽  
Vol 351 ◽  
pp. 60-71
Author(s):  
Jiachuan Yan ◽  
Zhenggang Cao ◽  
Youzhu Lin ◽  
Yue Yang ◽  
Le Sun

Sign in / Sign up

Export Citation Format

Share Document