DEVELOPMENT OF CONVECTIVE HEATING OPEN JET FACILITY USING CLUSTERED OXYGEN-ACETYLENE TORCHES

Author(s):  
G. Kumaravel ◽  
P. B. Chiranjeevi ◽  
B. Deependran
Keyword(s):  
2017 ◽  
Vol 6 (1) ◽  
pp. 35
Author(s):  
Amanulla CH. ◽  
Nagendra N. ◽  
Reddy M. Suryanarayana ◽  
◽  
◽  
...  

AIAA Journal ◽  
1967 ◽  
Vol 5 (11) ◽  
pp. 1940-1948 ◽  
Author(s):  
JOSEPH G. MARVIN ◽  
A. RICHARD SINCLAIR

2005 ◽  
Vol 14 (1) ◽  
pp. 37 ◽  
Author(s):  
Rodman Linn ◽  
Judith Winterkamp ◽  
Jonah J. Colman ◽  
Carleton Edminster ◽  
John D. Bailey

In this text we describe an initial attempt to incorporate discrete porous element fuel beds into the coupled atmosphere–wildfire behavior model HIGRAD/FIRETEC. First we develop conceptual models for use in translating measured tree data (in this case a ponderosa pine forest) into discrete fuel elements. Then data collected at experimental sites near Flagstaff, Arizona are used to create a discontinuous canopy fuel representation in HIGRAD/FIRETEC. Four simulations are presented with different canopy and understory configurations as described in the text. The results are discussed in terms of the same two discrete locations within the canopy for each simulation. The canopy structure had significant effects on the balance between radiative and convective heating in driving the fire and indeed sometimes determined whether a specific tree burned or not. In our simulations the ground fuel density was the determining factor in the overall spread rate of the fire, even when the overstory was involved in the fire. This behavior is well known in the fire meteorology community. In the future, simulations of this type could help land managers to better understand the role of canopy and understory structure in determining fire behavior, and thus help them decide between the different thinning and fuel treatment strategies available to them.


2012 ◽  
Vol 25 (18) ◽  
pp. 6394-6408 ◽  
Author(s):  
Gerald A. Meehl ◽  
Julie M. Arblaster ◽  
Grant Branstator

Abstract A linear trend calculated for observed annual mean surface air temperatures over the United States for the second-half of the twentieth century shows a slight cooling over the southeastern part of the country, the so-called warming hole, while temperatures over the rest of the country rose significantly. This east–west gradient of average temperature change has contributed to the observed pattern of changes of record temperatures as given by the ratio of daily record high temperatures to record low temperatures with a comparable east–west gradient. Ensemble averages of twentieth-century climate simulations in the Community Climate System Model, version 3 (CCSM3), show a slight west–east warming gradient but no warming hole. A warming hole appears in only several ensemble members in the Coupled Model Intercomparison Project phase 3 (CMIP3) multimodel dataset and in one ensemble member of simulated twentieth-century climate in CCSM3. In this model the warming hole is produced mostly from internal decadal time-scale variability originating mainly from the equatorial central Pacific associated with the Interdecadal Pacific Oscillation (IPO). Analyses of a long control run of the coupled model, and specified convective heating anomaly experiments in the atmosphere-only version of the model, trace the forcing of the warming hole to positive convective heating anomalies in the central equatorial Pacific Ocean near the date line. Cold-air advection into the southeastern United States in winter, and low-level moisture convergence in that region in summer, contribute most to the warming hole in those seasons. Projections show a disappearance of the warming hole, but ongoing greater surface temperature increases in the western United States compared to the eastern United States.


Author(s):  
Pablo Zurita-Gotor ◽  
Isaac M. Held

AbstractThis work investigates the characteristics of westward-propagating Rossby modes in idealized global general circulation models. Using a nonlinear smoothing algorithm to estimate the background spectrum and an objective method to extract the spectral peaks, the 4 leading meridional modes can be identified for each of the first 3 zonal wavenumbers, with frequencies close to the predictions from the Hough modes obtained by linearizing about a state of rest. Variations in peak amplitude for different modes, both within a simulation and across simulations, may be understood under the assumption that the forcing of the modes scales with the background spectrum. Surface friction affects the amplitude and width of the peaks but both remain finite as friction goes to zero, which implies that some other mechanism, arguably nonlinear, must also contribute to the damping of the modes. Although spectral peaks are also observed for the precipitation field with idealized moist physics, there is no evidence of mode enhancement by the convective heating. Subject to the same friction, the amplitude of the peaks are very similar in the dry and moist models when both are normalized by the background spectra.


Author(s):  
V. Rajamani ◽  
R. Anand ◽  
G. S. Reddy ◽  
J. Sekhar ◽  
M. A. Jog

Convective heating is used in materials processing industry for heat treatment and melting applications. Only recently, a new plasma device for convective heating at atmospheric pressure has become commercially available. In this paper, we have investigated heating of an aluminum sprue by conventional convective heating by air and by plasma flow. Transient temperature measurements were made in the sprue interior and the overall heat transfer coefficient was computationally predicted in the two cases. Results show that there is significant enhancement of heat transfer in convective plasma heating compared to heating due to unionized gas under identical flow and temperature conditions. For the cases considered in this study, close to a 60% increase in the heat transfer rate was obtained. The key finding is that even small amount of ionization (~ < 1%) can lead to significant increase in heat transfer coefficient.


2018 ◽  
Vol 140 (7) ◽  
Author(s):  
L. Aravindakshan Pillai ◽  
N. Sreenivas ◽  
K. Krishnaraj ◽  
Vinay Unnikrishnan ◽  
M. Ajith

In one of the launch vehicles of ISRO, there are two solid strap-ons attached to the core liquid engine. During the ascent phase, the external nozzle divergent of the strap-ons experiences heating due to radiation from the strap-ons as well as convective heating from the impingement of plumes from the core engine. Hence, the nozzle divergent of the strap-on beyond compliance ring is thermally protected by a coating of PC10 insulation applied over carbon/epoxy structural backup. Though the system worked satisfactorily, application of PC10 had increased the inert weight of each nozzle by 165 kg and took long time for realization. To reduce the inert weight as well as the time of application, precast phenolic based cork sheets (CkP) having lower density than PC10 were selected, as a replacement to PC10. As part of evaluating the thermal performance of the CkP material, specimen level tests with different configurations were carried out in 250 kW plasma jet facility of Vikram Sarabhai Space Centre (VSSC) wherein both the heat flux and the shear stress as expected in flight were simulated simultaneously. At the end of the test program, CkP was found to be superior to PC10 for external thermal protection system (TPS). This paper highlights details of the qualification tests carried out for clearing the cork phenolic system for use in the future launches.


Sign in / Sign up

Export Citation Format

Share Document