DESIGN OF THE TWO-PHASE MICROCHANNEL HEAT SINKS CONSIDERING THE MASS FLOW DISTRIBUTION

Equipment ◽  
2006 ◽  
Author(s):  
E. S. Cho ◽  
I. H. Lee ◽  
Min Soo Kim
2008 ◽  
Vol 130 (12) ◽  
Author(s):  
Minh Dang ◽  
Ibrahim Hassan ◽  
Sung In Kim

Thermal management as a method of heightening performance in miniaturized electronic devices using microchannel heat sinks has recently become of interest to researchers and the industry. One of the current challenges is to design heat sinks with uniform flow distribution. A number of experimental studies have been conducted to seek appropriate designs for microchannel heat sinks. However, pursuing this goal experimentally can be an expensive endeavor. The present work investigates the effect of cross-links on adiabatic two-phase flow in an array of parallel channels. It is carried out using the three-dimensional mixture model from the computational fluid dynamics software, FLUENT 6.3. A straight channel and two cross-linked channel models were simulated. The cross-links were located at 1/3 and 2/3 of the channel length, and their widths were one and two times larger than the channel width. All test models had 45 parallel rectangular channels, with a hydraulic diameter of 1.59 mm. The results showed that the trend of flow distribution agrees with experimental results. A new design, with cross-links incorporated, was proposed and the results showed a significant improvement of up to 55% on flow distribution compared with the standard straight channel configuration without a penalty in the pressure drop. Further discussion about the effect of cross-links on flow distribution, flow structure, and pressure drop was also documented.


Author(s):  
B. R. Alexander ◽  
E. N. Wang

Two-phase microchannels promise an efficient method to dissipate heat from high performance electronic systems by utilizing the latent heat of vaporization during the phase-change process. However, phase-change in microchannel heat sinks leads to challenges that are not present in macroscale systems due to the increasing importance of surface tension and viscous forces. In particular, flow instabilities often occur during the boiling process, which lead to liquid dry-out in the microchannels and severely limits the heat removal capabilities of the system. We propose a microscale breather device consisting of an array of hydrophobic breather ports which allow vapor bubbles to escape from the microchannels to improve flow stability. In this study, we use the combination of microfabricated structures and surface chemistry to separate vapor from the liquid flow. We designed test devices that allow for cross-sectional optical visualization to better understand the governing parameters of a breather design with high vapor removal efficiencies and minimal liquid leakage. We examined breather devices with average liquid velocities ranging from 0.5 cm/s to 4 cm/s and breather vacuum levels between 1 kPa and 9 kPa on the maximum gas removal rate through the breather. We demonstrated successful breather performance. In addition, a model was developed that offers design guidelines for future integrated breathers in microchannel heat sinks. The breathers also have significant promise for other microscale systems, such as micro-fuel cells, where liquid-vapor separation can significantly enhance system performance.


Author(s):  
Srivathsan Sudhakar ◽  
Justin A. Weibel

For thermal management architectures wherein the heat sink is embedded close to a dynamic heat source, non-uniformities may propagate through the heat sink base to the coolant. Available transient models predict the effective heat spreading resistance to calculate chip temperature rise, or simplify to a representative axisymmetric geometry. The coolant-side temperature response is seldom considered, despite the potential influence on flow distribution and stability in two-phase microchannel heat sinks. This study uses multi-dimensional transient and steady-periodic models to predict spatial and temporal variations of temperature within the heat sink base. The response to arbitrary transient heat inputs is obtained using Duhamel’s method. For time-periodic heat inputs, the steady-periodic solution is calculated using the method of complex temperature. Solution of the coolant-side temperature response in the presence of multiple different transient heat inputs is demonstrated. The degree of spatial and temporal non-uniformity in the coolant-side temperature profiles are mapped as a function of nondimensional geometric parameters and boundary conditions. Several case studies are presented to demonstrate the utility of such maps.


Author(s):  
Tannaz Harirchian ◽  
Suresh V. Garimella

Two-phase heat transfer in microchannels can support very high heat fluxes for use in high-performance electronics-cooling applications. However, the effects of microchannel cross-sectional dimensions on the heat transfer coefficient and pressure drop have not been investigated extensively. In the present work, experiments are conducted to investigate the local flow boiling heat transfer in microchannel heat sinks. The effect of channel size on the heat transfer coefficient and pressure drop is studied for mass fluxes ranging from 250 to 1600 kg/m2s. The test sections consist of parallel microchannels with nominal widths of 100, 250, 400, 700, and 1000 μm, all with a depth of 400 μm, cut into 12.7 mm × 12.7 mm silicon substrates. Twenty-five microheaters embedded in the substrate allow local control of the imposed heat flux, while twenty-five temperature microsensors integrated into the back of the substrates enable local measurements of temperature. The dielectric fluid Fluorinert FC-77 is used as the working fluid. The results of this study serve to quantify the effectiveness of microchannel heat transport while simultaneously assessing the pressure drop trade-offs.


Sign in / Sign up

Export Citation Format

Share Document