Enhancement of Heat Transfer Performance by Using Sawtooth Fin Structure in the Multiport Microchannel Flat Tube

Author(s):  
Ji Zhang ◽  
Yanhua Diao ◽  
Yaohua Zhao ◽  
Yanni Zhang
2019 ◽  
Vol 33 (5) ◽  
pp. 419-439 ◽  
Author(s):  
Xu Peng ◽  
Dingbiao Wang ◽  
Guanghui Wang ◽  
Yushen Yang ◽  
Sa Xiang

2013 ◽  
Vol 423-426 ◽  
pp. 1910-1913
Author(s):  
Jian Rong Du ◽  
Zu Yi Zheng ◽  
Jun Hua Wan ◽  
Yi De Wang ◽  
Zhong Min Wan ◽  
...  

Three heat exchangers, all of which have 38 tubes in total and 6 passes, with different tube arrangements were simulation investigated in laboratory. The effect of flat tube distribution on heat transfer performance and pressure drop characteristic was simulation investigated. The effect of different air velocity and flow on heat transfer performance and pressure drop characteristic was simulation investigated too. The results show that similar tube distribution has little effect on heat transfer but has great effect on pressure drop. It was found the tube arrangement from first pass to sixth pass is 10,9,6,5,4,4 has the best heat transfer performance and its pressure drop is small. The heat transfer and pressure drop increase with the air velocity and refrigerant flow.


2018 ◽  
Author(s):  
N. A. M. Amran ◽  
H. Mohamed ◽  
P. Gunnasegaran ◽  
M. Satgunam ◽  
I. N. Ismail ◽  
...  

2014 ◽  
Vol 701-702 ◽  
pp. 1233-1236
Author(s):  
Lv Xian Zeng ◽  
Zu Yi Zheng ◽  
Jun Hua Wan ◽  
Xi Chen ◽  
Zhong Min Wan ◽  
...  

Three heat exchangers, all of which have 38 tubes in total and 6 passes, with different tube arrangements were manufactured to be experimental investigated in laboratory. The effect of flat tube distribution on heat transfer performance and pressure drop characteristic was experimental investigated. The effect of different air velocity and flow on heat transfer performance and pressure drop characteristic was also experimental investigated. The results show that similar tube distribution has little effect on heat transfer quality but has great effect on pressure drop. It was found the third arrangement has the best heat transfer and its pressure drop is small. Thus the third arrangement is the best solution. The heat transfer and pressure drop increase with the air velocity and refrigerant flow, so a proper value should be chosen, it was found that the simulation results were mainly agreement with the experimental results.


Author(s):  
Husam Rajab ◽  
Da Yin ◽  
Hongbin Ma

This paper presents an investigation of the effect of nanofluid on the heat transfer performance in an elliptical micro-pin-fin heat sink including the influence of entropy generation and pin orientation. The orientation angle of pins is decreased with the number of pins in the array with a 90 degree angle for the first pin and a 0 degree angle for the last pin. To study the flow and heat transfer behaviors in a micro-pin-fin heat sink, steady Navier-Stokes and energy equations were discretized using a finite volume approach and were solved iteratively. Deionized (DI) water was used as a base coolant fluid while aluminum oxide (Al2O3) nanoparticles were used in the present study with mean diameters of 41.6 nm. The results showed that (1) changing the angular orientation of pins can cause significant enhancement in heat transfer, (2) a significant enhancement of heat transfer can be attained in the system due to the suspension of Al2O3 nanoparticles in the base fluid in comparison with pure water, (3) enhancement of heat transfer is intensified with increasing volume fraction of nanoparticles and Reynolds and Prandtl numbers, (4) increasing volume fraction of nanoparticles, which is responsible for higher heat transfer performance, leads to a higher pressure drop, (5) using nanofluids as coolant can cause lower heat transfer entropy generation due to their high thermal properties, and (6) with increasing volume fraction and Reynolds and Prandtl numbers, overall entropy generation rate decreases.


2003 ◽  
Vol 125 (6) ◽  
pp. 1007-1016 ◽  
Author(s):  
S. D. Gao ◽  
L. B. Wang ◽  
Y. H. Zhang ◽  
F. Ke

Winglet vortex generators can be used to enhance the heat transfer performance of finned flat tube bank fin. The effects of the height of vortex generators (VG) on local heat transfer were studied using the naphthalene sublimation method and the optimum height of winglet VG are screened by using JF, a dimensionless factor of the larger the better characteristics. In order to get JF, the local heat transfer coefficient obtained in experiments and a numerical method were used to get the heat transferred from the fin. For the configurations studied in this paper: for local characteristic, as increasing height of VG, heat transfer is enhanced, but the mostly enhanced region moves away from the tube wall; with increasing height of VG to certain degree, the width of enhanced region does not increase significantly; the effects of VG’s height on span-average Nusselt number (Nu) are more mixed on fin surface mounted with VGs and its back surface, with increasing height of VG, in some region heat transfer is worsened, and in other region heat transfer is enhanced; in real working condition, the heat transferred from fin surface mounted with VGs is larger than the heat transferred from the other surface of the fin; increasing the height of VG (H) increases average Nu and friction factor (f ), but with considering the fin efficiency, there is an optimum H to get best heat transfer performance; the optimum height of VG is dependent on the thickness of fin and its heat conductivity, for mostly used fin thickness and material, the optimum height of VG is 0.8 times of net fin spacing.


Sign in / Sign up

Export Citation Format

Share Document