Effects of Al2O3-Water Nanofluid and Angular Orientation on Entropy Generation and Convective Heat Transfer of an Elliptical Micro-Pin-Fin Heat Sink

Author(s):  
Husam Rajab ◽  
Da Yin ◽  
Hongbin Ma

This paper presents an investigation of the effect of nanofluid on the heat transfer performance in an elliptical micro-pin-fin heat sink including the influence of entropy generation and pin orientation. The orientation angle of pins is decreased with the number of pins in the array with a 90 degree angle for the first pin and a 0 degree angle for the last pin. To study the flow and heat transfer behaviors in a micro-pin-fin heat sink, steady Navier-Stokes and energy equations were discretized using a finite volume approach and were solved iteratively. Deionized (DI) water was used as a base coolant fluid while aluminum oxide (Al2O3) nanoparticles were used in the present study with mean diameters of 41.6 nm. The results showed that (1) changing the angular orientation of pins can cause significant enhancement in heat transfer, (2) a significant enhancement of heat transfer can be attained in the system due to the suspension of Al2O3 nanoparticles in the base fluid in comparison with pure water, (3) enhancement of heat transfer is intensified with increasing volume fraction of nanoparticles and Reynolds and Prandtl numbers, (4) increasing volume fraction of nanoparticles, which is responsible for higher heat transfer performance, leads to a higher pressure drop, (5) using nanofluids as coolant can cause lower heat transfer entropy generation due to their high thermal properties, and (6) with increasing volume fraction and Reynolds and Prandtl numbers, overall entropy generation rate decreases.

2021 ◽  
pp. 142-142
Author(s):  
Ji Choong ◽  
Kok Yu ◽  
Mohd Abdullah

This paper demonstrates a numerical study on heat transfer characteristics of laminar flow in a double-layered oblique finned heat sink using nanofluids with Al2O3 nanoparticles. Microchannel heat sink with primary channel width of 0.5 mm with aspect ratio of 3 is employed. Instead of having conventional straight fins, oblique fins with narrow secondary channels are used. In this numerical study, single-phase fluid model with conjugate heat transfer is considered. The numerical modelling was first validated with existing data for double-layered conventional microchannel heat sink having water (base fluid) as the working fluid. Numerical investigations on oblique finned microchannel heat sink were then conducted for flow rates ranging from 3?10-7 to 15?10-7 m3/s, equivalent to primary channel inlet velocity in between 0.2 and 1.0 m/s. It was found that double-layered oblique finned configuration yields better heat transfer performance, inferred by the lower overall thermal resistance obtained as compared with that of double-layered conventional heat sink. Employing double-layered oblique finned heat sink, the heat transfer performance could be further enhanced, by using nanoparticles that are added into water-based fluid. It is found that the reduction of overall thermal resistance is proportional to the volume fraction of nanoparticles. Using cross flow double-layered oblique finned configuration, the largest reduction in the overall thermal resistance can reach up to 25%, by using nanofluids with 4% volume fraction of Al2O3 nanoparticles.


2013 ◽  
Vol 832 ◽  
pp. 166-171
Author(s):  
M.R. Sohel ◽  
Saidur Rahman ◽  
Mohd Faizul Mohd Sabri ◽  
M.M. Elias ◽  
S.S. Khaleduzzaman

Nanofluid is the suspension of nanoparticle in a base fluid. In this paper, the heat transfer performances of the nanofluids flow through a circular shaped copper minichannel heat sink are discussed analytically. Al2O3-water, CuO-water, Cu-water and Ag-water nanofluids were used in this analysis to make comparative study of their thermal performances. The hydraulic diameter of the minichannel is 500 μm and total block dimension is 50mm× 50mm× 4mm. The analysis is done at different volume fractions of the nanoparticle ranging from 0.5 vol.% to 4 vol.%. The results showed that the heat transfer performance increases significantly by the increasing of volume fraction of nanoparticle. Ag-water nanofluid shows the highest performance compared to the other nanofluids. So, this nanofluid can be recommended as a coolant flow through a circular minichannel for cooling of electronic heat sink.


Author(s):  
K. Bala Subrahmanyam ◽  
Aparesh Datta ◽  
Pritam Das

This numerical study investigates the simultaneous application of axial wall conduction effect and entropy generation minimization as two principles to identify heat transfer performance in a microchannel heat sink with fan cavity and ribs. In this conjugate analysis, three different materials for a microchannel heat sink considered are silicon, aluminium, and copper. In addition to the fan cavity (F), effects of different rib configurations arranged symmetrically inside the fan cavity, that is, backward triangle rib (FB), rectangular rib (FR), forward triangle rib (FF), and diamond rib (FD) with Reynolds numbers ranging from 136 to 588 are studied. The comparative study between silicon and copper in terms of local wall and bulk fluid temperatures, increment in solid wall to fluid thermal conductivity ratio within the range (247.07 <  ksf < 669.44), local Nusselt number (Nu x), axial conduction number (M), and entropy generation number ( Ns, a) were furnished and examined. Structural optimization is performed on diamond rib configuration geometrical parameters to observe entropy generation number and wall conduction effects trend as thermal performance is greatly improved to 2.49, at the lowest Ns, a to 0.31 at Re 391.47, with copper in the back to back cavities case. However based on the numerical results, comparative importance of axial wall conduction effect consideration in the present design of microsink, silicon is showing best results in overcoming at Re 588.4, consistently in all optimization cases.


2021 ◽  
Author(s):  
Tao Guo ◽  
Yun-Peng Ben ◽  
Yu-Chao Liu ◽  
Cun-Liang Liu ◽  
Hui-Ren Zhu

Abstract The paper proposes a technique of using advanced pin fins on a target plate to improve the impingement heat transfer performance in an array impingement cooling system. The initial shape of the advanced pin fin is a frustum of a cone. In order to enhance heat transfer and reduce flow resistance, the upper and lower sharp edges of the frustum of a cone are rounded. There are arrays of film holes on the target plate, and the influence of the crossflow is not considered. The flow and heat transfer characteristics of the array impingement flat plate and advanced pin fin plate were studied by numerical simulation. During the numerical simulation, the Reynolds number was varied from 2000 to 19500, the jet-to-plate spacing Z/d from 3 to 6 (d = 0.50mm) and the jet hole diameter d is 0.50 mm, 0.75 mm and 1.00 mm respectively. The results show that the averaged Nusselt number values for the advanced pin fin target plate showed an increase ranging from 15% to 20% over those for the flat target plate, It is generally considered that the enhancement of heat transfer is mainly due to the enhancement of fluid disturbance by the pin fins. However, by changing the size of the pin fins, it is found that the enhancement of heat transfer is mainly caused by the increase of heat transfer area, and the influence of enhancing the disturbance is not significant. The pressure loss is little higher than that of the flat plate. The averaged Nusselt number values for the advanced pin fin target plate decreases with the increase of the jet-to-plate spacing, and increases with the increase of Reynolds number. At the same mass flow rate, the averaged heat transfer performance of the pin fin target plate decreases with the increase of jet hole diameter, and the results show that the averaged heat transfer performance of 0.5mm jet hole diameter is the best.


Sign in / Sign up

Export Citation Format

Share Document