PASSIVE TWO-PHASE THERMOSYPHON LOOP COOLING SYSTEM FOR HIGH-HEAT-FLUX SERVERS

2015 ◽  
Vol 3 (4) ◽  
pp. 369-391 ◽  
Author(s):  
Nicolas Lamaison ◽  
Jackson Braz Marcinichen ◽  
S. Szczukiewicz ◽  
John R. Thome ◽  
P. Beucher
Author(s):  
Oyuna Angatkina ◽  
Andrew Alleyne

Two-phase cooling systems provide a viable technology for high–heat flux rejection in electronic systems. They provide high cooling capacity and uniform surface temperature. However, a major restriction of their application is the critical heat flux condition (CHF). This work presents model predictive control (MPC) design for CHF avoidance in two-phase pump driven cooling systems. The system under study includes multiple microchannel heat exchangers in series. The MPC controller performance is compared to the performance of a baseline PI controller. Simulation results show that while both controllers are able to maintain the two-phase cooling system below CHF, MPC has significant reduction in power consumption compared to the baseline controller.


2019 ◽  
Vol 163 ◽  
pp. 114338 ◽  
Author(s):  
Fengze Hou ◽  
Wenbo Wang ◽  
Hengyun Zhang ◽  
Cheng Chen ◽  
Chuan Chen ◽  
...  

Author(s):  
Farhad Saffaraval ◽  
Amir Jokar

The objective of this study is to experimentally explore thermodynamic performance of R245fa, as a low-pressure and environmentally-friendly refrigerant, in a microchannel heat exchanger. This heat exchanger is used in an electronics cooling application with high-power density. Due to the large amount of latent heat that is released during evaporation process, the two-phase microchannel coolers are able to remove much more energy compared to single-phase cooling systems. In this study, R245fa is used as the working fluid in a refrigeration pump loop that mainly includes an evaporator, a condenser, a refrigerant pump, and a pressure regulator valve. The goal is to obtain optimal mass flow rates and system pressures while the temperatures in evaporator and condenser are kept constant for specific conditions. The results obtained from this study are then compared to the results previously obtained for water as the working fluid in a similar cooling system. It is expected the evaporative cooling through the microchannel heat exchanger be a viable and effective solution, especially for higher heat flux applications.


2019 ◽  
Vol 196 ◽  
pp. 00021
Author(s):  
Karapet Eloyan ◽  
Alexey Kreta ◽  
Egor Tkachenko

One of the promising ways of removing large heat fluxes from the surface of heat-stressed elements of electronic devices is the use of evaporating thin layer of liquid film, moving under the action of the gas flow in a flat channel. In this work, a prototype of evaporative cooling system for high heat flux removal with forced circulation of liquid and gas coolants with controlled pulsation, capable to remove heat flux of up to 1,5 kW/cm2 and higher was presented. For the first time the regime with controlled pulsation is used. Due to pulsations, it is possible to achieve high values of critical heat flux due to a brief increase in the flow rate of the liquid, which allows to "wash off" large dry spots and prevent the occurrence of zones of flow and drying.


Author(s):  
Sylwia Szczukiewicz ◽  
Nicolas Lamaison ◽  
Jackson B. Marcinichen ◽  
John R. Thome ◽  
Peter J. Beucher

The main aim of the current paper is to demonstrate the capability of a two-phase closed thermosyphon loop system to cool down a contemporary datacenter rack, passively cooling the entire rack including its numerous servers. The effects on the performance of the entire cooling loop with respect to the server orientation, micro-evaporator design, riser and downcomer diameters, working fluid, and approach temperature difference at the condenser have been modeled and simulated. The influence of the thermosyphon height (here from 5 to 20 cm with a horizontally or vertically oriented server) on the driving force that guarantees the system operation whilst simultaneously fulfilling the critical heat flux (CHF) criterion also has been examined. In summary, the thermosyphon height was found to be the most significant design parameter. For the conditions simulated, in terms of CHF, the 10 cm-high thermosyphon was the most advantageous system design with a minimum safety factor of 1.6 relative to the imposed heat flux of 80 W cm−2. Additionally, a case study including an overhead water-cooled heat exchanger to extract heat from the thermosyphon loop has been developed and then the entire rack cooling system evaluated in terms of cost savings, payback period, and net benefit per year. This approximate study provides a general understanding of how the datacenter cooling infrastructure directly impacts the operating budget as well as influencing the thermal/hydraulic operation, performance, and reliability of the datacenter. Finally, the study shows that the passive two-phase closed loop thermosyphon cooling system is a potentially economically sound technology to cool high heat flux servers of datacenters.


Author(s):  
Shinichi Miura ◽  
Yukihiro Inada ◽  
Yasuhisa Shinmoto ◽  
Haruhiko Ohta

Advance of an electronic technology has caused the increase of heat generation density for semiconductors densely integrated. Thermal management becomes more important, and a cooling system for high heat flux is required. It is extremely effective to such a demand using flow boiling heat transfer because of its high heat removal ability. To develop the cooling system for a large area at high heat flux, the cold plate structure of narrow channels with auxiliary unheated channel for additional liquid supply was devised and confirmed its validity by experiments. A large surface of 150mm in heated length and 30mm in width with grooves of an apex angle of 90 deg, 0.5mm depth and 1mm in pitch was employed. A structure of narrow rectangular heated channel between parallel plates with an unheated auxiliary channel was employed and the heat transfer characteristics were examined by using water for different combinations of gap sizes and volumetric flow rates. Five different liquid distribution modes were tested and their data were compared. The values of CHF larger than 1.9×106W/m2 for gap size of 2mm under mass velocity based on total volumetric flow rate and on the cross section area of main heated channel 720kg/m2s or 1.7×106W/m2 for gap size of 5mm under 290kg/m2s were obtained under total volumetric flow rate 4.5×10−5m3/s regardless of the liquid distribution modes. Under several conditions, the extensions of dry-patches were observed at the upstream location of the main heated channel resulting burnout not at the downstream but at the upstream. High values of CHF larger than 2×106W/m2 were obtained only for gap size of 2mm. The result indicates that higher mass velocity in the main heated channel is more effective for the increase in CHF. It was clarified that there is optimum flow rate distribution to obtain the highest values of CHF. For gap size of 2mm, high heat transfer coefficient as much as 7.4×104W/m2K were obtained at heat flux 1.5×106W/m2 under mass velocity 720kg/m2s based on total volumetric flow rate and on the cross section area of main heated channel. Also to obtain high heat transfer coefficient, it is more useful to supply the cooling liquid from the auxiliary unheated channel for additional liquid supply in the transverse direction perpendicular to the flow in the main heated channel.


Author(s):  
Rongliang Zhou ◽  
Juan Catano ◽  
Tiejun Zhang ◽  
John T. Wen ◽  
Greg J. Michna ◽  
...  

Steady-state modeling and analysis of a two-loop cooling system for high heat flux removal applications are studied. The system structure proposed consists of a primary pumped loop and a vapor compression cycle (VCC) as the secondary loop to which the pumped loop rejects heat. The pumped loop consists of evaporator, condenser, pump, and bladder liquid accumulator. The pumped loop evaporator has direct contact with the heat generating device and CHF must be higher than the imposed heat fluxes to prevent device burnout. The bladder liquid accumulator adjusts the pumped loop pressure level and, hence, the subcooling of the refrigerant to avoid pump cavitation and to achieve high critical heat flux (CHF) in the pumped loop evaporator. The vapor compression cycle of the two-loop cooling system consists of evaporator, liquid accumulator, compressor, condenser and electronic expansion valve. It is coupled with the pumped loop through a fluid-to-fluid heat exchanger that serves as both the vapor compression cycle evaporator and the pumped loop condenser. The liquid accumulator of the vapor compression cycle regulates the cycle active refrigerant charge and provides saturated vapor to the compressor at steady state. The heat exchangers are modeled with the mass, momentum, and energy balance equations. Due to the projected incorporation of microchannels in the pumped loop to enhance the heat transfer in heat sinks, the momentum equation, rarely seen in previous refrigeration system modeling efforts, is included to capture the expected significant microchannel pressure drop witnessed in previous experimental investigations. Electronic expansion valve, compressor, pump, and liquid accumulators are modeled as static components due to their much faster dynamics compared with heat exchangers. The steady-state model can be used for static system design that includes determining the total refrigerant charge in the vapor compression cycle and the pumped loop to accommodate the varying heat load, sizing of various components, and parametric studies to optimize the operating conditions for a given heat load. The effect of pumped loop pressure level, heat exchangers geometries, pumped loop refrigerant selection, and placement of the pump (upstream or downstream of the evaporator) are studied. The two-loop cooling system structure shows both improved coefficient of performance (COP) and CHF overthe single loop vapor compression cycle investigated earlier by authors for high heat flux removal.


2011 ◽  
Vol 21 (10) ◽  
pp. 105002 ◽  
Author(s):  
Shiv Govind Singh ◽  
Amit Agrawal ◽  
Siddhartha P Duttagupta
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document