Framework for Health Management and Recording for Sailors using Internet of Things (IoT) in Underwater Communication

Author(s):  
BALAJI K ◽  
Sakthivel Murugan S
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Lei Ru ◽  
Bin Zhang ◽  
Jing Duan ◽  
Guo Ru ◽  
Ashutosh Sharma ◽  
...  

The technological advent in smart sensing devices and the Internet has provided practical solutions in various sectors of networking, public and private sector industries, and government organizations worldwide. This study intends to combine the Internet of Things (IoT) technology with health monitoring to make it personalized and timely through allowing the interconnection between the devices. This work is aimed at exploring various wearable health monitoring modules that people wear to monitor heart rate, blood pressure, pulse, body temperature, and physiological information. The information is acquired using the wireless sensor to create a health monitoring system. The data is integrated using the Internet of Things for processing, connecting, and computing to achieve real-time monitoring. The temperature of three people measured by the temperature thermometer is 36.4, 36.7, and 36.5 (°C), respectively, and the average acquired by the monitoring system of the three people is 36.5, 36.4, and 36.5 (°C), respectively, indicating that the system demonstrated relatively accurate and stable testability. The user’s ECG is displayed clearly and conveniently using the ECG acquisition system. The pulse rate of the three people tested by the system is 78, 78, and 79 (times/min), respectively, similar to the medical pulse meter results. The physiological information acquired using the semantic recognition, matching system, and character matching system is relatively accurate. It concludes that the human health monitoring system based on the Internet of Things can provide people with daily health management, instrumental in heightening health service quality and level.


Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2338 ◽  
Author(s):  
Yuanju Qu ◽  
Xinguo Ming ◽  
Siqi Qiu ◽  
Maokuan Zheng ◽  
Zengtao Hou

With the development of the internet of things (IoTs), big data, smart sensing technology, and cloud technology, the industry has entered a new stage of revolution. Traditional manufacturing enterprises are transforming into service-oriented manufacturing based on prognostic and health management (PHM). However, there is a lack of a systematic and comprehensive framework of PHM to create more added value. In this paper, the authors proposed an integrative framework to systematically solve the problem from three levels: Strategic level of PHM to create added value, tactical level of PHM to make the implementation route, and operational level of PHM in a detailed application. At the strategic level, the authors provided the innovative business model to create added value through the big data. Moreover, to monitor the equipment status, the health index (HI) based on a condition-based maintenance (CBM) method was proposed. At the tactical level, the authors provided the implementation route in application integration, analysis service, and visual management to satisfy the different stakeholders’ functional requirements through a convolutional neural network (CNN). At the operational level, the authors constructed a self-sensing network based on anti-inference and self-organizing Zigbee to capture the real-time data from the equipment group. Finally, the authors verified the feasibility of the framework in a real case from China.


Sign in / Sign up

Export Citation Format

Share Document