A NEW SEMIANALYTICAL PRESSURE TRANSIENT MODEL TO INTERPRET WELL TEST DATA IN RESERVOIRS WITH LIMITED EXTENT BARRIERS

2018 ◽  
Vol 21 (11) ◽  
pp. 1137-1162 ◽  
Author(s):  
Meisam Adibifard ◽  
Mohammad Sharifi
SPE Journal ◽  
2014 ◽  
Vol 20 (01) ◽  
pp. 186-201 ◽  
Author(s):  
Mei Han ◽  
Gaoming Li ◽  
Jingyi Chen

Summary The pressure-transient well-test data can be used to determine the thickness-weighted average permeability in a multilayer reservoir. Injection- or production-profile logs (layer rates), if available, may be used to further quantify the layer properties. This paper explores the possibility of the use of microseismic data in place of injection-/production-profile logs for layered-reservoir characterization. The microseismic first-arrival times from the perforation-timing shots of the test well to monitor wells can only resolve the average velocity along its wavepath but are more sensitive to the layer (or region) with high wave velocity (low productivity). On the contrary, the pressure-transient data are more sensitive to the properties of the high-productivity (high-permeability) layers. Therefore, these two types of data are complementary in reservoir characterization. In this paper, we assimilate these two types of data by use of the state-of-the-art ensemble-Kalman-filter (EnKF) method. Layered-homogeneous- and layered-heterogeneous-reservoir examples verified the complementary nature of these two types of data. The porosities and permeabilities in the layered reservoir obtained after assimilating both types of data are comparable with assimilating pressure-transient and layer-rate data. EnKF is a stochastic process, and the final results may depend on the initial ensemble because of sampling errors, sample size, and nonlinearity of the problem. In this paper, we generated 10 different ensembles for each example for better uncertainty quantification. The paper shows that assimilating pressure-transient data only will yield biased estimates of layered-reservoir properties, whereas assimilating both pressure and microseismic data improves the reservoir-property estimation and reservoir-prediction capabilities.


SPE Journal ◽  
2006 ◽  
Vol 11 (01) ◽  
pp. 35-47 ◽  
Author(s):  
Michael M. Levitan ◽  
Gary E. Crawford ◽  
Andrew Hardwick

Summary Pressure-rate deconvolution provides equivalent representation of variable-rate well-test data in the form of characteristic constant rate drawdown system response. Deconvolution allows one to develop additional insights into pressure transient behavior and extract more information from well-test data than is possible by using conventional analysis methods. In some cases, it is possible to interpret the same test data in terms of larger radius of investigation. There are a number of specific issues of which one has to be aware when using pressure-rate deconvolution. In this paper, we identify and discuss these issues and provide practical considerations and recommendations on how to produce correct deconvolution results. We also demonstrate reliable use of deconvolution on a number of real test examples. Introduction Evaluation and assessment of pressure transient behavior in well-test data normally begins with examination of test data on different analysis plots [e.g., a Bourdet (1983, 1989) derivative plot, a superposition (semilog) plot, or a Cartesian plot]. Each of these plots provides a different view of the pressure transient behavior hidden in the test data by well-rate variation during a test. Integration of these several views into one consistent picture allows one to recognize, understand, and explain the main features of the test transient pressure behavior. Recently, a new method of analyzing test data in the form of constant rate drawdown system response has emerged with development of robust pressure-rate deconvolution algorithm. (von Schroeter et al. 2001, 2004; Levitan 2005). Deconvolved drawdown system response is another way of presenting well-test data. Pressure--rate deconvolution removes the effects of rate variation from the pressure data measured during a well-test sequence and reveals underlying characteristic system behavior that is controlled by reservoir and well properties and is not masked by the specific rate history during the test. In contrast to a Bourdet derivative plot or to a superposition plot, which display the pressure behavior for a specific flow period of a test sequence, deconvolved drawdown response is a representation of transient pressure behavior for a group of flow periods included in deconvolution. As a result, deconvolved system response is defined on a longer time interval and reveals the features of transient behavior that otherwise would not be observed with conventional analysis approach. The deconvolution discussed in this paper is based on the algorithm first described by von Schroeter, Hollaender, and Gringarten (2001, 2004). An independent evaluation of the von Schroeter et al. algorithm by Levitan (2005) confirmed that with some enhancements and safeguards it can be used successfully for analysis of real well-test data. There are several enhancements that distinguish our form of the deconvolution algorithm. The original von Schroeter algorithm reconstructs only the logarithm of log-derivative of the pressure response to constant rate production. Initial reservoir pressure is supposed to be determined in the deconvolution process along with the deconvolved drawdown system response. However, inclusion of the initial pressure in the list of deconvolution parameters often causes the algorithm to fail. For this reason, the authors do not recommend determination of initial pressure in the deconvolution process (von Schroeter et al. 2004). It becomes an input parameter and has to be evaluated through other means. Our form of deconvolution algorithm reconstructs the pressure response to constant rate production along with its log-derivative. Depending on the test sequence, in some cases we can recover the initial reservoir pressure.


SPE Journal ◽  
1996 ◽  
Vol 1 (02) ◽  
pp. 145-154 ◽  
Author(s):  
Dean S. Oliver

2021 ◽  
Author(s):  
Mohamad Mustaqim Mokhlis ◽  
Nurdini Alya Hazali ◽  
Muhammad Firdaus Hassan ◽  
Mohd Hafiz Hashim ◽  
Afzan Nizam Jamaludin ◽  
...  

Abstract In this paper we will present a process streamlined for well-test validation that involves data integration between different database systems, incorporated with well models, and how the process can leverage real-time data to present a full scope of well-test analysis to enhance the capability for assessing well-test performance. The workflow process demonstrates an intuitive and effective way for analyzing and validating a production well test via an interactive digital visualization. This approach has elevated the quality and integrity of the well-test data, as well as improved the process cycle efficiency that complements the field surveillance engineers to keep track of well-test compliance guidelines through efficient well-test tracking in the digital interface. The workflow process involves five primary steps, which all are conducted via a digital platform: Well Test Compliance: Planning and executing the well test Data management and integration Well Test Analysis and Validation: Verification of the well test through historical trending, stability period checks, and well model analysis Model validation: Correcting the well test and calibrating the well model before finalizing the validity of the well test Well Test Re-testing: Submitting the rejected well test for retesting and final step Integrating with corporate database system for production allocation This business process brings improvement to the quality of the well test, which subsequently lifts the petroleum engineers’ confidence level to analyze well performance and deliver accurate well-production forecasting. A well-test validation workflow in a digital ecosystem helps to streamline the flow of data and system integration, as well as the way engineers assess and validate well-test data, which results in minimizing errors and increases overall work efficiency.


2021 ◽  
Author(s):  
Nagaraju Reddicharla ◽  
Subba Ramarao Rachapudi ◽  
Indra Utama ◽  
Furqan Ahmed Khan ◽  
Prabhker Reddy Vanam ◽  
...  

Abstract Well testing is one of the vital process as part of reservoir performance monitoring. As field matures with increase in number of well stock, testing becomes tedious job in terms of resources (MPFM and test separators) and this affect the production quota delivery. In addition, the test data validation and approval follow a business process that needs up to 10 days before to accept or reject the well tests. The volume of well tests conducted were almost 10,000 and out of them around 10 To 15 % of tests were rejected statistically per year. The objective of the paper is to develop a methodology to reduce well test rejections and timely raising the flag for operator intervention to recommence the well test. This case study was applied in a mature field, which is producing for 40 years that has good volume of historical well test data is available. This paper discusses the development of a data driven Well test data analyzer and Optimizer supported by artificial intelligence (AI) for wells being tested using MPFM in two staged approach. The motivating idea is to ingest historical, real-time data, well model performance curve and prescribe the quality of the well test data to provide flag to operator on real time. The ML prediction results helps testing operations and can reduce the test acceptance turnaround timing drastically from 10 days to hours. In Second layer, an unsupervised model with historical data is helping to identify the parameters that affecting for rejection of the well test example duration of testing, choke size, GOR etc. The outcome from the modeling will be incorporated in updating the well test procedure and testing Philosophy. This approach is being under evaluation stage in one of the asset in ADNOC Onshore. The results are expected to be reducing the well test rejection by at least 5 % that further optimize the resources required and improve the back allocation process. Furthermore, real time flagging of the test Quality will help in reduction of validation cycle from 10 days hours to improve the well testing cycle process. This methodology improves integrated reservoir management compliance of well testing requirements in asset where resources are limited. This methodology is envisioned to be integrated with full field digital oil field Implementation. This is a novel approach to apply machine learning and artificial intelligence application to well testing. It maximizes the utilization of real-time data for creating advisory system that improve test data quality monitoring and timely decision-making to reduce the well test rejection.


2008 ◽  
Author(s):  
Danila Gulyaev ◽  
Andrey Ivanovich Ipatov ◽  
Nataliya Chernoglazova ◽  
Maxim Fedoseev

2021 ◽  
Vol 134 (3) ◽  
pp. 35-38
Author(s):  
A. M. Svalov ◽  

Horner’s traditional method of processing well test data can be improved by a special transformation of the pressure curves, which reduces the time the converted curves reach the asymptotic regimes necessary for processing these data. In this case, to take into account the action of the «skin factor» and the effect of the wellbore, it is necessary to use a more complete asymptotic expansion of the exact solution of the conductivity equation at large values of time. At the same time, this method does not allow to completely eliminate the influence of the wellbore, since the used asymptotic expansion of the solution for small values of time is limited by the existence of a singular point, in the vicinity of which the asymptotic expansion ceases to be valid. To solve this problem, a new method of processing well test data is proposed, which allows completely eliminating the influence of the wellbore. The method is based on the introduction of a modified inflow function to the well, which includes a component of the boundary condition corresponding to the influence of the wellbore.


Sign in / Sign up

Export Citation Format

Share Document