THE EFFECT OF INLET CONDITION ON THE COMBUSTION IN A POROUS–FREE FLAME BURNER

2017 ◽  
Vol 20 (9) ◽  
pp. 823-839 ◽  
Author(s):  
Seyed Abdolmehdi Hashemi ◽  
Majid Nikfar
Keyword(s):  
2010 ◽  
Vol 49 (4) ◽  
pp. 783-795 ◽  
Author(s):  
Takayuki Fuyuto ◽  
Helmut Kronemayer ◽  
Burkhard Lewerich ◽  
Jan Brübach ◽  
Taketoshi Fujikawa ◽  
...  

2011 ◽  
Vol 20 (5) ◽  
pp. 657 ◽  
Author(s):  
Wesley J. Cole ◽  
McKaye H. Dennis ◽  
Thomas H. Fletcher ◽  
David R. Weise

Individual cuttings from five shrub species were burned over a flat-flame burner under wind conditions of 0.75–2.80 m s–1. Both live and dead cuttings were used. These included single leaves from broadleaf species as well as 3 to 5 cm-long branches from coniferous and small broadleaf species. Flame angles and flame lengths were determined by semi-automated measurements of video images. Additional data, such as times and temperatures corresponding to ignition, maximum flame height and burnout were determined using video and infrared images. Flame angles correlated linearly with wind velocity. They also correlated with the Froude number when either the flame length or flame height was used. Flame angles in individual leaf experiments were generally 50 to 70% less than flame angles derived from Froude number correlations reported in the literature for fuel-bed experiments. Although flame angles increased with fuel mass and moisture content, they were unaffected by fuel species. Flame lengths and flame heights decreased with moisture contents and wind speed but increased with mass. In most cases, samples burned with wind conditions ignited less quickly and at lower temperatures than samples burned without wind. Most samples contained moisture at the time of ignition. Results of this small-scale approach (e.g. using individual cuttings) apply to ignition of shrubs and to flame propagation in shrubs of low bulk density. This research is one of the few attempts to characterise single-leaf and small-branch combustion behaviour in wind and is crucial to the continued development of a semi-empirical shrub combustion model.


2015 ◽  
Vol 787 ◽  
pp. 732-735
Author(s):  
A. Alaguraja ◽  
S. Balaji ◽  
Inti Sandeep ◽  
M. Karthikeyan ◽  
S. Soma Sundaram

Diffusion flame burners are mainly used in industries over premixed flame burners for safety considerations. But the combustion process in a diffusion flame is not complete and the flame is usually in bright yellow in colour in contrast to the premixed flame which gives a bluish flame. To improve the combustion process in a diffusion flame burner a novel approach, using chevrons has been carried out. The chevrons are found to reduce the aero-acoustic noise in the exhaust jets of aircraft engines by allowing better mixing of the exhaust gas with the ambient air. The similar concept is used here where the tips of the burners are cut in the form of chevrons. Experimental investigations are carried out on burners with three and four chevrons in addition to a standard burner using LPG as the fuel. The results indicate that with the introduction of chevrons the diffusion flame becomes more compact. The premixed region, in the diffusion flame, where the air and fuel is mixed well is found to increase by nearly 100 % with the usage of chevrons, indicating better mixing of fuel and air. The results also indicate that increasing the number of chevrons from three to four does not show much variation. Further experiments are to be carried out to determine the improved fuel consumption with the usage of chevrons.


2009 ◽  
Vol 87 (3) ◽  
pp. 490-495 ◽  
Author(s):  
Jian Jun Li ◽  
Kevin B. Thurbide

An alternative means of independently controlling column pressure in supercritical fluid chromatography (SFC) by resistively heating the post-column restrictor is demonstrated. Compared to conventional block heating methods, resistive restrictor heating provides at least four times greater pressure programming rates and allows for much faster cooling times in between runs, thereby increasing sample throughput. When applying resistive restrictor heating in proximity to a flame ionization detector, the chromatographic baseline noise increases substantially and obscures peaks. However, adding about 100 mL/min of nitrogen into the flame burner essentially removes this noise and returns the detector response to normal. The analyte retention time in consecutive pressure gradient trials reproduces well with a minimal relative standard deviation of 0.36% (n = 3). The resistive restrictor heating technique presented is also found to be equally effective for either capillary or packed SFC operating modes. Results suggest that this method can potentially provide a simple, inexpensive, and convenient alternative to limited passive restrictors or more costly and complex backpressure regulators that are often used to maintain system pressure in supercritical fluid chromatography.


Author(s):  
Zhixuan Duan ◽  
Brendan Shaffer ◽  
Vincent McDonell ◽  
Georg Baumgartner ◽  
Thomas Sattelmayer

Flashback is a key operability issue for low emission premixed combustion systems operated on high hydrogen content fuels. Previous work investigated fuel composition impacts on flashback propensity and found that burner tip temperature was important in correlating flashback data in premixed jet flames. An enclosure around the jet flame was found to enhance the flame–burner rim interaction. The present study further addresses these issues using a jet burner with various geometric configurations and interchangeable materials. Systematic studies addressing the quantitative influence of various parameters such as tip temperature, burner material, enclosure size, and burner diameter on flashback propensity were carried out. A comprehensive overview of the flashback limits for all conditions tested in the current study as well as those published previously is given. The collective results indicate that the burner materials, tip temperature, and flame confinement play significant roles for flashback propensity and thus help explain previous scatter in flashback data. Furthermore, the present work indicates that the upstream flame propagation during flashback is affected by the burner material. The material with lower thermal conductivity yields larger flashback propensity but slower flame regression inside the tube. These observations can be potentially exploited to minimize the negative impacts of flashback in practical applications.


Sign in / Sign up

Export Citation Format

Share Document