Flow and Heat Transfer Within Segregated Beds of Solid Particles

2001 ◽  
Vol 4 (3) ◽  
pp. 10 ◽  
Author(s):  
Abdulmajeed A. Mohamad ◽  
G. A. Karim
2017 ◽  
Vol 95 (5) ◽  
pp. 440-449 ◽  
Author(s):  
Qianfang Liu ◽  
Jing Zhu ◽  
Bandar Bin-Mohsin ◽  
Liancun Zheng

Nanofluid slip flow with distinct solid particles past a wedge with convective surface and high order slip is discussed in this paper. The wedge model is modified by considering the effects of Brownian motion and thermophphoresis together with the high order velocity slip and temperature jump. In this study, the governing fundamental equations are first transformed into third-order ordinary differential equations and solved by using the homotopy analysis method (HAM). Through error analysis and comparison with previous research, the effectiveness of HAM is ascertained, and the crucial influence of nanoparticles and high-order slip on the fluid skin-friction coefficient and heat transfer coefficient is analyed. Thermophphoresis parameter and suction/injection parameter are found to cause an increase in velocity and temperature. The rate of heat transfer in the Cu–water nanofluid is found to be higher than the others.


2018 ◽  
Vol 845 ◽  
pp. 417-461 ◽  
Author(s):  
Dong Li ◽  
Kun Luo ◽  
Jianren Fan

Direct numerical simulations of particle-laden flows in a spatially developing turbulent thermal boundary layer over an isothermally heated wall have been performed with realistic fully developed turbulent inflow boundary conditions. To the authors’ best knowledge, this is the first time the effects of inertial solid particles on turbulent flow and heat transfer in a flat-plate turbulent boundary layer have been investigated, using a two-way coupled Eulerian–Lagrangian method. Results indicate that the presence of particles increases the mean streamwise velocity and temperature gradients of the fluid in the near-wall region. As a result, the skin-friction drag and heat transfer are significantly enhanced in the particle-laden flows with respect to the single-phase flow. The near-wall sweep and ejection motions are suppressed by the particles and hence the Reynolds shear stress and wall-normal turbulent heat flux are attenuated, which leads to reductions in the production of the turbulent kinetic energy and temperature fluctuations. In addition, the coherence and spacing of the near-wall velocity and temperature streaky structures are distinctly increased, while the turbulent vortical structures appear to be disorganized under the effect of the particles. Moreover, the intensity of the streamwise vortices decreases monotonically with increasing particle inertia.


2002 ◽  
Vol 16 (9) ◽  
pp. 1175-1182 ◽  
Author(s):  
Soo Whan Ahn ◽  
ByungChang Lee ◽  
WonCheol Kim ◽  
Myung- Whan Bae ◽  
Yoon Pyo Lee

2018 ◽  
Vol 140 (8) ◽  
Author(s):  
Wandong Zhao ◽  
Ying Zhang ◽  
Ben Xu ◽  
Peisheng Li ◽  
Zhaotai Wang ◽  
...  

The flow and heat transfer (FHT) in porous volumetric solar receiver was investigated through a double-distributed thermally coupled multiple-relaxation-time (MRT) lattice Boltzmann model (LBM) in this study. The MRT-LBM model was first verified by simulating the FHT in Sierpinski carpet fractal porous media and compared with the results from computational fluid dynamics (CFD). Three typical porous structures in volumetric solar receivers were developed and constructed, and then the FHT in these three porous structures were investigated using the MRT-LBM model. The effects of pore structure, Reynolds (Re) number based on air velocity at inlet, the porosity, and the thermal diffusivity of solid matrix were discussed. It was found that type-III pore structure among the three typical porous structures has the best heat transfer performance because of its lowest maximum temperature of solid particles at the inlet and the highest average temperature of air at the outlet, under the same porosity and heat flux density. Furthermore, increasing the thermal diffusivity of solid particles will lead to higher averaged air temperature at the outlet. It is hoped that the simulation results will be beneficial to the solar thermal community when designing the solar receivers in concentrated solar power (CSP) applications.


2015 ◽  
Vol 9 (3) ◽  
pp. 242 ◽  
Author(s):  
Efstathios Kaloudis ◽  
Dimitris Siachos ◽  
Konstantinos Stefanos Nikas

Sign in / Sign up

Export Citation Format

Share Document