TWO-PHASE CFD: THE VARIOUS APPROACHES AND THEIR APPLICABILITY TO EACH FLOW REGIME

2011 ◽  
Vol 23 (2-4) ◽  
pp. 101-128 ◽  
Author(s):  
D. Bestion ◽  
P. Coste ◽  
B. Niceno ◽  
S. Mimouni ◽  
D. Lakehal ◽  
...  
Keyword(s):  
1985 ◽  
Vol 50 (3) ◽  
pp. 745-757 ◽  
Author(s):  
Andreas Zahn ◽  
Lothar Ebner ◽  
Kurt Winkler ◽  
Jan Kratochvíl ◽  
Jindřich Zahradník

The effect of two-phase flow regime on decisive hydrodynamic and mass transfer characteristics of horizontal-tube gas-liquid reactors (pressure drop, liquid holdup, kLaL) was determined in a cocurrent-flow experimental unit of the length 4.15 m and diameter 0.05 m with air-water system. An adjustable-height weir was installed in the separation chamber at the reactor outlet to simulate the effect of internal baffles on reactor hydrodynamics. Flow regime maps were developed in the whole range of experimental gas and liquid flow rates both for the weirless arrangement and for the weir height 0.05 m, the former being in good agreement with flow-pattern boundaries presented by Mandhane. In the whole range of experi-mental conditions pressure drop data could be well correlated as a function of gas and liquid flow rates by an empirical exponential-type relation with specific sets of coefficients obtained for individual flow regimes from experimental data. Good agreement was observed between values of pressure drop obtained for weirless arrangement and data calculated from the Lockhart-Martinelli correlation while the contribution of weir to the overall pressure drop was well described by a relation proposed for the pressure loss in closed-end tubes. In the region of negligible weir influence values of liquid holdup were again succesfully correlated by the Lockhart-Martinelli relation while the dependence of liquid holdup data on gas and liquid flow rates obtained under conditions of significant weir effect (i.e. at low flow rates of both phases) could be well described by an empirical exponential-type relation. Results of preliminary kLaL measurements confirmed the decisive effect of the rate of energy dissipation on the intensity of interfacial mass transfer in gas-liquid dispersions.


1994 ◽  
Vol 59 (12) ◽  
pp. 2595-2603
Author(s):  
Lothar Ebner ◽  
Marie Fialová

Two regions of instabilities in horizontal two-phase flow were detected. The first was found in the transition from slug to annular flow, the second between stratified and slug flow. The existence of oscillations between the slug and annular flows can explain the differences in the limitation of the slug flow in flow regime maps proposed by different authors. Coexistence of these two regimes is similar to bistable behaviour of some differential equation solutions.


2003 ◽  
Vol 125 (4) ◽  
pp. 544-544 ◽  
Author(s):  
Sang Young Son ◽  
Jeffrey S. Allen ◽  
Kenneth O. Kihm

2011 ◽  
Vol 32 (1) ◽  
pp. 164-175 ◽  
Author(s):  
J. Enrique Julia ◽  
Basar Ozar ◽  
Jae-Jun Jeong ◽  
Takashi Hibiki ◽  
Mamoru Ishii

Author(s):  
Joaquin E. Moran ◽  
David S. Weaver

An experimental study was conducted to investigate damping and fluidelastic instability in tube arrays subjected to two-phase cross-flow. The purpose of this research was to improve our understanding of these phenomena and how they are affected by void fraction and flow regime. The working fluid used was Freon 11, which better models steam-water than air-water mixtures in terms of vapour-liquid mass ratio as well as permitting phase changes due to pressure fluctuations. The damping measurements were obtained by “plucking” the monitored tube from outside the test section using electromagnets. An exponential function was fitted to the tube decay trace, producing consistent damping measurements and minimizing the effect of frequency shifting due to fluid added mass fluctuations. The void fraction was measured using a gamma densitometer, introducing an improvement over the Homogeneous Equilibrium Model (HEM) in terms of density and velocity predictions. It was found that the Capillary number, when combined with the two-phase damping ratio (interfacial damping), shows a well defined behaviour depending on the flow regime. This observation can be used to develop a better methodology to normalize damping results. The fluidelastic results agree with previously presented data when analyzed using the HEM and the half-power bandwidth method. The interfacial velocity is suggested for fluidelastic studies due to its capability for collapsing the fluidelastic data. The interfacial damping was introduced as a tool to include the effects of flow regime into the stability maps.


Sign in / Sign up

Export Citation Format

Share Document