scholarly journals Factors Affecting the Night Dark Respiration Rate of Individual Plant in the Later Growth Stage of Rice (Oryza sativa L.).

1993 ◽  
Vol 62 (1) ◽  
pp. 66-72 ◽  
Author(s):  
Shigemi AKITA ◽  
Byun Woo LEE ◽  
Tetsuya ISHIKAWA ◽  
Qian LI
1988 ◽  
Vol 65 (10) ◽  
pp. 1605-1609 ◽  
Author(s):  
Arvind Mishra ◽  
A. G. Gopalakrishna ◽  
J. V. Prabhakar

2014 ◽  
Vol 40 (1) ◽  
pp. 14-17 ◽  
Author(s):  
Ye. N. Baranova ◽  
E. N. Akanov ◽  
A. A. Gulevich ◽  
L. V. Kurenina ◽  
S. A. Danilova ◽  
...  

2020 ◽  
Vol 21 (14) ◽  
pp. 4930
Author(s):  
Mingnan Qu ◽  
Jemaa Essemine ◽  
Ming Li ◽  
Shuoqi Chang ◽  
Tiangen Chang ◽  
...  

Respiration is a major plant physiological process that generates adenosine triphosphate (ATP) to support the various pathways involved in the plant growth and development. After decades of focused research on basic mechanisms of respiration, the processes and major proteins involved in respiration are well elucidated. However, much less is known about the natural variation of respiration. Here we conducted a survey on the natural variation of leaf dark respiration (Rd) in a global rice minicore diversity panel and applied a genome-wide association study (GWAS) in rice (Oryza sativa L.) to determine candidate loci associated with Rd. This rice minicore diversity panel consists of 206 accessions, which were grown under both growth room (GR) and field conditions. We found that Rd shows high single-nucleotide polymorphism (SNP) heritability under GR and it is significantly affected by genotype-environment interactions. Rd also exhibits strong positive correlation to the leaf thickness and chlorophyll content. GWAS results of Rd collected under GR and field show an overlapped genomic region in the chromosome 3 (Chr.3), which contains a lead SNP (3m29440628). There are 12 candidate genes within this region; among them, three genes show significantly higher expression levels in accessions with high Rd. Particularly, we observed that the LRK1 gene, annotated as leucine rich repeat receptor kinase, was up-regulated four times. We further found that a single significantly associated SNPs at the promoter region of LRK1, was strongly correlated with the mean annual temperature of the regions from where minicore accessions were collected. A rice lrk1 mutant shows only ~37% Rd of that of WT and retarded growth following exposure to 35 °C for 30 days, but only 24% reduction in growth was recorded under normal temperature (25 °C). This study demonstrates a substantial natural variation of Rd in rice and that the LRK1 gene can regulate leaf dark respiratory fluxes, especially under high temperature.


Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1317
Author(s):  
Subang An ◽  
Xingtu Liu ◽  
Bolong Wen ◽  
Xiaoyu Li ◽  
Peng Qi ◽  
...  

Water shortages have an important impact on the photosynthetic capacity of Phragmites australis. However, this impact has not been adequately studied from the perspective of photosynthesis. An in-depth study of the photosynthetic process can help in better understanding the impact of water shortages on the photosynthetic capacity of P. australis, especially on the microscale. The aim of this study is to explore the photosynthetic adaptation strategies to environmental changes in saline‒alkaline wetlands. The light response curves and CO2 response curves of P. australis in five habitats (hygrophilous, xerophytic, psammophytic, abandoned farmland, paddy field drainage) in saline‒alkaline wetlands were measured at different stages of their life history, and we used a nonrectangular hyperbolic model to fit the data. It was concluded that P. australis utilized coping strategies that differed between the growing and breeding seasons. P. australis in abandoned farmland during the growing season had the highest apparent quantum efficiency (AQE) and photosynthetic utilization efficiency for weak light because of the dark environment. The dark respiration rate of P. australis in the drainage area of paddy fields was the lowest, and it had the highest values for photorespiration rate, maximum photosynthetic rate (Pmax), photosynthetic capacity (Pa), biomass, maximum carboxylation rate (Vcmax), and maximum electron transfer rate (Jmax). The light insensitivity of P. australis increased with the transition from growing to breeding season, and the dark respiration rate also showed a downward trend. Moreover, Vcmax and Jmax would decline when Pmax and Pa showed a declining trend, and vice versa. In other words, Vcmax and Jmax could explain changes in the photosynthetic capacity to some extent. These findings contribute to providing insights that Vcmax and Jmax can directly reflect the variation in photosynthetic capacity of P. australis under water shortages in saline‒alkaline wetlands and in other parts of world where there are problems with similarly harmful environmental conditions.


1973 ◽  
Vol 26 (1) ◽  
pp. 15 ◽  
Author(s):  
HG Jones ◽  
CB Osmond

The preparation and photosynthetic properties of thin leaf slices from several plants were examined. Photosynthesis was measured either as oxygen evolution in a polarographic electrode, or as 14C02 fixation. Oxygen uptake in the dark gave a measure of the dark respiration rate.


1977 ◽  
Vol 4 (1) ◽  
pp. 159 ◽  
Author(s):  
S Fukai ◽  
JH Silsbury

The rates of dark respiration of subterranean clover communities, grown at 12, 16, 20 and 24°C in naturally lit temperature-controlled glasshouses, were measured several times during growth. The dark respiration rate, measured at growth temperature, increased linearly with increase in plant dry matter for each temperature and it increased approximately linearly with increase in temperature at a given dry matter. A low crop growth rate shown by communities with dry matter greater than 300 g m-2 at a temperature of 24°C was largely accounted for by a high respiration rate. The temperature coefficient of dark respiration (Q10) was inversely related to growth temperature. Dark respiration rate at 28°C was lower for communities grown at 24°C than for communities grown at 12 or 16°C when the comparison was made at the same dry matter. Calculated dark respiration rate from shoot dry matter, growth temperature and current measured temperature was close to the measured rate, indicating the dark respiration rate of subterranean clover communities to be largely accounted for by these factors. Use of an integrated form of a growth equation and allowing for dark efflux shows, on a 12 hour day, the rate of dry matter accumulation at 24°C to be the same as that at 12°C.


2016 ◽  
Vol 11 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Beakal Tadesse Gi ◽  
Hussein Mohammed A ◽  
Alemayehu Assefa Geb

2006 ◽  
Vol 115 (1-4) ◽  
pp. 105-112 ◽  
Author(s):  
Zhongjun Xu ◽  
Xunhua Zheng ◽  
Yuesi Wang ◽  
Yulong Wang ◽  
Yao Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document