photosynthetic properties
Recently Published Documents


TOTAL DOCUMENTS

144
(FIVE YEARS 12)

H-INDEX

30
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Xiao Xiao ◽  
Linxuan He ◽  
Xiaomei Zhang ◽  
Yu Jin ◽  
Jinsong Chen

Abstract Transgenerational plasticity allows offsprings to be more adaptive in the environmental conditions experienced by their parents. It is suggested that differential effects of transgenerational plasticity on growth performance of offspring ramets may help to understand successful invasion of invasive plant with clonal growth comparing with its congeneric native one. A pot experiment using invasive herb Wedelia trilobata and its congeneric native species Wedelia chinensis was conducted to investigate differential effects of high/low light treatment experienced by mother ramets on morphological and photosynthetic properties of offspring ramets subjected to stressful low light treatment. For W. chinensis, stolon length and maximum carboxylation rate (Vmax) in offspring ramets from mother ramets subjected to low light treatment were significantly greater than those in offspring ramets from mother ramets subjected to high light treatment. For W. trilobata, leaf area and potential maximum net photosynthetic rate (Pmax) in offspring ramets from mother ramets subjected to low light treatment were significantly greater than those in offspring ramets from mother ramets subjected to high light treatment. We tentatively concluded that effects of transgenerational plasticity on morphological and photosynthetic properties among clonal plants could be species-specific. In addition, more favorable effect of transgenerational plasticity on growth performance was observed in the invasive plant than in its congeneric native species. It is suggested that transgenerational plasticity may be very important for successful invasion of invasive plant with clonal growth, especially in maternal environmental conditions. So, our experiment provides new insight into invasive mechanism of invasive plants.


2021 ◽  
Vol 29 (6) ◽  
pp. 409-417
Author(s):  
Su Jeoung Suh ◽  
Ji Won Moon ◽  
In Bok Jang ◽  
Young Chang Kim ◽  
Dong Hwi Kim ◽  
...  

2021 ◽  
Vol 22 (15) ◽  
pp. 8043
Author(s):  
Moein Moosavi-Nezhad ◽  
Reza Salehi ◽  
Sasan Aliniaeifard ◽  
Georgios Tsaniklidis ◽  
Ernst J. Woltering ◽  
...  

To investigate the importance of light on healing and acclimatization, in the present study, grafted watermelon seedlings were exposed to darkness (D) or light, provided by blue (B), red (R), a mixture of R (68%) and B (RB), or white (W; 35% B, 49% intermediate spectra, 16% R) LEDs for 12 days. Survival ratio, root and shoot growth, soluble carbohydrate content, photosynthetic pigments content, and photosynthetic performance were evaluated. Seedling survival was not only strongly limited in D but the survived seedlings had an inferior shoot and root development, reduced chlorophyll content, and attenuated photosynthetic efficiency. RB-exposed seedlings had a less-developed root system. R-exposed seedlings showed leaf epinasty, and had the smallest leaf area, reduced chlorophyll content, and suppressed photosynthetic apparatus performance. The R-exposed seedlings contained the highest amount of soluble carbohydrate and together with D-exposed seedlings the lowest amount of chlorophyll in their scions. B-exposed seedlings showed the highest chlorophyll content and improved overall PSII photosynthetic functioning. W-exposed seedling had the largest leaf area, and closely resembled the photosynthetic properties of RB-exposed seedlings. We assume that, during healing of grafted seedlings monochromatic R light should be avoided. Instead, W and monochromatic B light may be willingly adopted due to their promoting effect on shoot, pigments content, and photosynthetic efficiency.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1212
Author(s):  
Xiulong Zhang ◽  
Hao Li ◽  
Xiaoxing Hu ◽  
Pengyao Zheng ◽  
Mitsuru Hirota ◽  
...  

How photosynthetic-related leaf traits of non-nitrogen (N)-fixing pioneer species respond to extreme habitat conditions of primary succession is still not well-elucidated, especially in volcanically N-deplete habitats. The effect of N-deplete soil on photosynthetic-related leaf traits can provide a basis for predicting how plants adjust their strategies to adapt to such habitats. To examine the responses of leaf traits to extreme conditions, we investigated Miscanthus condensatus (a non-N-fixing C4 pioneer grass) which grows on a volcanically devastated area on Miyake-jima Island, Japan, in which the volcanic ash has been deposited for 17–18 years since the 2000-year eruption. Leaf N content (Narea), light-saturated photosynthetic rate (Amax), and photosynthetic N use efficiency (PNUE) in three contrasting study sites: bare land (BL), shrub land gap (SLG), and shrub land under canopy (SLUC) were determined. Results indicated that compared to previous studies and internal comparison of Miyake Island, M. condensatus in BL was able to maintain a relatively high Amax, Narea and PNUE. The higher Amax was in part a result of the higher PNUE. This is a characteristic necessary for its successful growth in N-deplete soils. These results suggest that M. condensatus has photosynthetic-related advantages for adaptation to volcanically N-deplete habitats.


2020 ◽  
Vol 12 (12) ◽  
pp. 5178
Author(s):  
Yongchao Bai ◽  
Junpei Zhang ◽  
Yue Wu ◽  
Ruimin Huang ◽  
Yingying Chang ◽  
...  

Plant growth characteristics after grafting are mainly dependent on photosynthesis performance, which may be influenced by grafting combinations with different rootstocks and scions. In this study, we used one-year-old walnut grafts to investigate the grafting compatibility between precocious (‘Liaoning 1’, L) and hybrid (‘Zhong Ning Sheng’, Z) walnut, as well as rootstock and scion impact on the growth and photosynthetic properties of walnut trees. The results showed that grafting compatibility between the two varieties is high, with survival rates upward of 86%. Overwintering survival of grafted seedlings was as high as 100%, which indicated that the allopolyploid had good resistance to low-temperature stress. The homograft of the hybrid walnut had the highest net photosynthesis rate (18.77 μmol·m−2s−1, Z/Z) and growth characteristics, which could be due to its higher transpiration rate and stomatal conductance, whereas the homograft of precocious walnut presented the lowest net photosynthesis rate (15.08 μmol·m−2s−1, L/L) and growth characteristics. Significant improvements in the net photosynthesis rate (15.97 and 15.24 μmol·m−2s−1 for L/Z and Z/L, respectively) and growth characteristics of precocious walnut were noticed during grafting of the hybrid walnut, which could have been contributed by their transpiration rate. The results of this study serve as a guide for the selection and breeding of good rootstock to improve plant growth characteristics and photosynthetic efficiency. We conclude that good rootstock selection improves plant growth potential and could play an important role in sustainable production.


2020 ◽  
Vol 102 (4) ◽  
pp. 1021-1027
Author(s):  
Bi-Hua Chen ◽  
Wei-Li Guo ◽  
He-Lian Yang ◽  
Qing-Fei Li ◽  
Jun-Guo Zhou ◽  
...  

Abstract Powdery mildew (PM) is one of the most important fungal diseases in Cucurbita moschata (pumpkin) cultivation. This experiment was conducted to shed light on the physiological mechanisms of PM resistance in pumpkin cultivars. PM pathogen was inoculated on pumpkin seedlings, PM-susceptible genotype (JJJD) and PM-resistant genotype (inbred line 112–2) to study the PM-fungal growth, plant photosynthetic and biochemical parameters with different intervals of time. The disease index and pathogen growth observed for the PM-infected 112–2 seedlings were milder than those observed for the JJJD seedlings. The net photosynthetic rate (Pn), stomatal conductance (gs) and transpiration rate (Tr) were reduced for both the PM-infected genotypes, while the internal CO2 concentration (Ci) increased in comparison with the non-infected controls. PM pathogen inoculation impaired the photosynthetic performance in seedlings of both genotypes and this was largely associated with stomatal closure. In comparison with the non-infected controls, the superoxide dismutase (SOD) and β-1,3-glucanase activities were reduced for both the PM-infected genotypes, while the peroxidase (POD) and phenylalanine ammonia lyase (PAL) activities were increased. The catalase (CAT) activity was reduced in the 112–2 genotype and increased in the JJJD genotype after PM pathogen inoculation. Together, our data show that PM resistance in pumpkin seedlings is associated with the maintenance of photosynthetic performance and the regulation of defense-related enzyme activities .


AMB Express ◽  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Fangchun Liu ◽  
Hailin Ma ◽  
Lin Peng ◽  
Zhenyu Du ◽  
Bingyao Ma ◽  
...  

Abstract Plant growth-promoting rhizobacteria (PGPR) are beneficial bacteria that survive within the range of plant rhizosphere and can promote plant growth. The effects of PGPR in promoting plant growth, activating soil nutrients, reducing fertilizer application, and improving the resistance of plant inducible system have been widely investigated. However, few studies have investigated PGPR as elicitors of tolerance to abiotic stresses, especially drought stress. In this study, the effects of Acinetobacter calcoaceticus X128 on the photosynthetic rate (Pn), stomatal conductance (Gs), intracellular CO2 concentration (Ci), and total chlorophyll content [Chl(a+b)] of Sambucus williamsii Hance seedling leaves under moderate drought stress and drought-rewatering conditions were determined. Compared with those of uninoculated seedlings, the average Pn values during the entire drought stress of inoculated seedlings increased by 12.99%. As the drought duration was lengthened, Ci of uninoculated leaves continued to increase after rapidly declining, whereas Gs continuously decreased. Furthermore, their photosynthetic properties were simultaneously restricted by stomatal and non-stomatal factors. After X128 inoculation, Ci and Gs of S. williamsii Hance leaves continued to decrease, and their photosynthetic properties were mainly restricted by stomatal factors. At the end of the drought stress, water stress reduced [Chl(a + b)] of S. williamsii Hance leaves by 13.49%. However, X128 inoculation decreased this deficit to only 7.39%. After water supply was recovered, Pn, Gs, and [Chl(a+b)] in uninoculated leaves were reduced by 14.23%, 12.02%, and 5.86%, respectively, relative to those under well-watered conditions. However, Ci increased by 6.48%. Compared with those of uninoculated seedlings, Pn, Gs, and [Chl(a+b)] in X128-inoculated seedlings were increased by 9.83%, 9.30%, and 6.85%, respectively. Therefore, the inoculation of X128 under arid environments can mitigate the reduction of chlorophyll, delay the restriction caused by non-stomatal factors to Pn in plant leaves under water stress, and can be more conducive to the recovery of photosynthetic functions of leaves after water supply is recovered.


2019 ◽  
Vol 58 (1) ◽  
pp. 19-29
Author(s):  
Antigone E. T. Mitchell ◽  
Barry A. Logan ◽  
Jaret S. Reblin ◽  
Kevin C. Burns ◽  
Kevin S. Gould

Sign in / Sign up

Export Citation Format

Share Document