scholarly journals Difference in the Damage by Aphanomyces Root Rot with the Cultivation Method and Utilization of Resistant Cultivars in Sugar Beet

2021 ◽  
Vol 90 (3) ◽  
pp. 300-306
Author(s):  
Kazuyuki Okazaki ◽  
Kazunori Taguchi ◽  
Hiroaki Matsuhira ◽  
Tsubasa Narihiro ◽  
Yosuke Kuroda
2013 ◽  
Vol 47 (13) ◽  
pp. 1629-1644 ◽  
Author(s):  
M. Paramasivan ◽  
A. Chandrasekaran ◽  
S. Mohan ◽  
N. Muthukrishnan

Plant Disease ◽  
2016 ◽  
Vol 100 (12) ◽  
pp. 2427-2433 ◽  
Author(s):  
Sahar Arabiat ◽  
Mohamed F. R. Khan

Rhizoctonia damping-off and crown and root rot caused by Rhizoctonia solani are major diseases of sugar beet (Beta vulgaris L.) worldwide, and growers in the United States rely on fungicides for disease management. Sensitivity of R. solani to fungicides was evaluated in vitro using a mycelial radial growth assay and by evaluating disease severity on R. solani AG 2-2 inoculated plants treated with fungicides in the greenhouse. The mean concentration that caused 50% mycelial growth inhibition (EC50) values for baseline isolates (collected before the fungicides were registered for sugar beet) were 49.7, 97.1, 0.3, 0.2, and 0.9 μg ml−1 and for nonbaseline isolates (collected after registration and use of fungicides) were 296.1, 341.7, 0.9, 0.2, and 0.6 μg ml−1 for azoxystrobin, trifloxystrobin, pyraclostrobin, penthiopyrad, and prothioconazole, respectively. The mean EC50 values of azoxystrobin, trifloxystrobin, and pyraclostrobin significantly increased in the nonbaseline isolates compared with baseline isolates, with a resistant factor of 6.0, 3.5, and 3.0, respectively. Frequency of isolates with EC50 values >10 μg ml−1 for azoxystrobin and trifloxystrobin increased from 25% in baseline isolates to 80% in nonbaseline isolates. Although sensitivity of nonbaseline isolates of R. solani to quinone outside inhibitors decreased, these fungicides at labeled rates were still effective at controlling the pathogen under greenhouse conditions.


Plant Disease ◽  
2001 ◽  
Vol 85 (7) ◽  
pp. 718-722 ◽  
Author(s):  
Sebastian Kiewnick ◽  
Barry J. Jacobsen ◽  
Andrea Braun-Kiewnick ◽  
Joyce L. A. Eckhoff ◽  
Jerry W. Bergman

Rhizoctonia crown and root rot, caused by the fungus Rhizoctonia solani AG 2-2, is one of the most damaging sugar beet diseases worldwide and causes significant economic losses in more than 25% of the sugar beet production area in the United States. We report on field trials in the years 1996 to 1999 testing both experimental fungicides and antagonistic Bacillus sp. for their potential to reduce disease severity and increase sugar yield in trials inoculated with R. solani AG 2-2. Fungicides were applied as in-furrow sprays at planting or as band sprays directed at the crown at the four-leaf stage, or four- plus eight-leaf stage, while bacteria were applied at the four-leaf stage only. The fungicides azoxystrobin and tebuconazole reduced crown and root rot disease by 50 to 90% over 3 years when used at rates of 76 to 304 g a.i./ha and 250 g a.i./ha, respectively. The disease index at harvest was reduced and the root and sugar yield increased with azoxystrobin compared with tebuconazole. The combination of azoxystrobin applied at 76 g a.i./ha and the Bacillus isolate MSU-127 resulted in best disease reduction and greatest root and sucrose yield increase.


Author(s):  
Haque ME ◽  
◽  
Parvin MS ◽  

Rhizoctonia solani causes pre-emergence and post-emergence damping-off, as well as crown and root rot of sugar beet (Beta vulgaris L.), which significantly affects the yield returns in the USA and Europe. The pathogen overwinters as sclerotia or melanized mycelium. Traditionally, the resistance of cultivars to R. solani is evaluated by scoring disease reactions at the crowns and roots of older seedlings, thus resistance is not evaluated during seed germination. Moreover, earlier studies evaluated cultivars resistance to R. solani using colonized whole barley or wheat grains which, unlike sclerotia, are artificial inocula of the pathogen that require time, space and technical know-how to produce. Moreover, colonized grains are prone to contamination with other pathogens, consumed by rodents/birds while applied in the field, and are often uneconomic. Considering those limitations, a study was undertaken (1) to develop in vitro methods to generate large-scale sclerotia, (2) to compare pathogenic potentials of sclerotia, mycelia, and colonized barley grains for optimization of dampingoff assays, and (3) to evaluate Rhizoctonia resistance of selected commercial cultivars during the seed germination phase. Comparing six different culture media, we found that R. solani had the highest radial growth (8.9 ± 0.04, cm³) at 8-days and the maximum number of sclerotia produced (203 ± 4.6) at 28-days in CV8 medium. We demonstrated significant differences in pathogenicity of the three different forms of R. solani inocula and susceptibility of cultivars to preand post-emergence damping-off. The highest pre-emergence damping-off and root rot were observed with sclerotia, and the highest post-emergence dampingoff was recorded with both sclerotial and colonized barley inocula. In addition, varietal differences in susceptibility to pre- and post-emergence damping-off were noted. The highest pre-emergence damping-off was recorded on cv Crystal 101RR and lowest in Maribo MA 504. The highest post-emergence damping-off was recorded on BTS 8500 and the lowest in Crystal 467. The maximum mean root rot was observed in BTS 8500, BTS 8606, and Crystal 101R. Our studies demonstrated that sclerotia serve as efficient natural inocula, reemphasized that host-pathogen interactions differ at the early vs. late stages of sugar beet growth, and highlighted the need to reevaluate commercial sugar beet cultivars for resistance at the seed germination stage.


Plant Disease ◽  
2019 ◽  
Vol 103 (9) ◽  
pp. 2322-2329 ◽  
Author(s):  
Yangxi Liu ◽  
Aiming Qi ◽  
Mohamed F. R. Khan

Rhizoctonia crown and root rot of sugar beet (Beta vulgaris L.), caused by Rhizoctonia solani, continues to be one of the important concerns for the beet industry in Minnesota and North Dakota. Use of resistant cultivars is an important strategy in the management of R. solani in combination with seed treatment and timely fungicide application during the growing season. The objective of this greenhouse study was to determine how sugar beet plants responded to increasing age in resistance to R. solani. Each of three seed companies provided three commercial cultivars with varying R. solani resistance levels: susceptible, moderately resistant, and resistant. Seed were planted at a weekly interval to create different plant age groups from seed to 10-week-old plants, with growing degree days (GDD) ranging from 0 to 1,519 thermal time (°Cd). Seed and plants were all simultaneously inoculated with R. solani AG2-2-infested barley grains. Twenty-eight days after inoculation, plants were pulled and washed, and roots were evaluated for disease severity. All cultivars were highly susceptible to R. solani when inoculated at seed to 3 weeks old (0 to 464°Cd). At 4 and 5 weeks of plant age (617 to 766°Cd), resistant cultivars started to show significant resistance to R. solani. Proportion of the affected roots with disease score ≥ 5 followed a sigmoid response, declining with increased GDD in moderately resistant and resistant cultivars, whereas it continued to decline linearly with increased GDD in susceptible cultivars. This study demonstrated that sugar beet cultivars, regardless of their assigned level of R. solani resistance, were highly susceptible to the pathogen before they reached the six- to eight-leaf stage at 4 to 5 weeks (617 to 766°Cd) after planting. Therefore, additional protection in the form of seed treatment or fungicide application may be required to protect sensitive sugar beet seed and seedlings in fields with a history of R. solani under favorable environmental conditions.


2009 ◽  
Vol 31 (2) ◽  
pp. 232-240 ◽  
Author(s):  
Carl A. Strausbaugh ◽  
Anne M. Gillen

Plant Disease ◽  
2013 ◽  
Vol 97 (9) ◽  
pp. 1175-1180 ◽  
Author(s):  
Carl A. Strausbaugh ◽  
Imad A. Eujayl ◽  
Leonard W. Panella

Rhizoctonia crown and root rot caused by Rhizoctonia solani can cause serious economic losses in sugar beet fields. Preliminary evidence suggests that there could be interactions between different strains and resistance sources. Thus, field studies were conducted to determine whether nine R. solani AG-2-2 IIIB strains varied for virulence when compared with a noninoculated check and interacted with five sugar beet lines (four resistant lines and a susceptible check). The studies were arranged in a randomized complete block design with six replications. Roots were evaluated for surface rot and internal fungal and bacterial rot in September. All strains were virulent on the susceptible check, FC901/C817, and had a similar ranking (r = 0.80 to 0.97; P = 0.0096 to <0.0001) regardless of disease variable. Line FC709-2 was resistant (response not different from noninoculated check, P ≥ 0.1042) to all strains, while the strain responses resulted in weak interactions with less-resistant lines in 14 of 19 variable-year combinations. Because most commercial sugar beet cultivars contain low to intermediate resistance to Rhizoctonia crown and root rot, the strain used to screen should be considered in order to maintain consistent responses between nurseries and commercial fields.


Sign in / Sign up

Export Citation Format

Share Document