Determination of Culture Condition for Polygalacturonase Production by Rhizoctonia solani AG2-2, Causal Agent of Root Rot in Sugar Beet

2007 ◽  
Vol 6 (2) ◽  
pp. 153-158 ◽  
Author(s):  
F. Karimzadeh . ◽  
M. Motallebi . ◽  
M.R. Zamani . ◽  
Sh. Hamze .
Plant Disease ◽  
2016 ◽  
Vol 100 (12) ◽  
pp. 2427-2433 ◽  
Author(s):  
Sahar Arabiat ◽  
Mohamed F. R. Khan

Rhizoctonia damping-off and crown and root rot caused by Rhizoctonia solani are major diseases of sugar beet (Beta vulgaris L.) worldwide, and growers in the United States rely on fungicides for disease management. Sensitivity of R. solani to fungicides was evaluated in vitro using a mycelial radial growth assay and by evaluating disease severity on R. solani AG 2-2 inoculated plants treated with fungicides in the greenhouse. The mean concentration that caused 50% mycelial growth inhibition (EC50) values for baseline isolates (collected before the fungicides were registered for sugar beet) were 49.7, 97.1, 0.3, 0.2, and 0.9 μg ml−1 and for nonbaseline isolates (collected after registration and use of fungicides) were 296.1, 341.7, 0.9, 0.2, and 0.6 μg ml−1 for azoxystrobin, trifloxystrobin, pyraclostrobin, penthiopyrad, and prothioconazole, respectively. The mean EC50 values of azoxystrobin, trifloxystrobin, and pyraclostrobin significantly increased in the nonbaseline isolates compared with baseline isolates, with a resistant factor of 6.0, 3.5, and 3.0, respectively. Frequency of isolates with EC50 values >10 μg ml−1 for azoxystrobin and trifloxystrobin increased from 25% in baseline isolates to 80% in nonbaseline isolates. Although sensitivity of nonbaseline isolates of R. solani to quinone outside inhibitors decreased, these fungicides at labeled rates were still effective at controlling the pathogen under greenhouse conditions.


2019 ◽  
Vol 34 (1) ◽  
pp. 19-29
Author(s):  
Mira Vojvodic ◽  
Dejan Lazic ◽  
Petar Mitrovic ◽  
Brankica Tanovic ◽  
Ivana Vico ◽  
...  

Soil-borne fungi belonging to the genus Rhizoctonia are considered to be among the most destructive sugar beet pathogens. Although multinucleate R. solani AG-2-2 is frequently detected as the main causal agent of root rot of sugar beet worldwide, several binucleate (AG-A, AG-E and AG-K) and multinucleate Rhizoctonia (R. solani AG-4, AG-5 and AG-8) have also been included in the disease complex. Due to their soil-borne nature and wide host range, the management of Rhizoctonia root rot of sugar beet is highly demanding. Identification of Rhizoctonia AG associated with root rot of sugar beet is the essential first step in determining a successful disease management strategy. In this paper we report a highly specific and sensitive real-time PCR protocol for detection of R. solani AG-2-2 which showed a high level of specificity after testing against 10 different anastomosis groups and subgroups, including AG-2-1 as the most closely related. Moreover, a similar conventional PCR assay showed the same specificity but proved to be at least a 100 times less sensitive. Future research will include further testing and adaptation of this protocol for direct detection and quantification of R. solani AG-2-2 in different substrates, including plant tissue and soil samples.


2016 ◽  
Vol 56 (2) ◽  
pp. 116-121
Author(s):  
Paweł Skonieczek ◽  
Mirosław Nowakowski ◽  
Jacek Piszczek ◽  
Marcin Żurek ◽  
Łukasz Matyka

Abstract From 2008 to 2010 the levels of sugar beet seedlings infection caused by Rhizoctonia solani were compared in laboratory tests. Seven sugar beet lines were tested: H56, H66, S2, S3, S4, S5 and S6 as well as three control cultivars: Carlos, Esperanza and Janosik. Sugar beet lines with tolerance to rhizoctoniosis and cultivars without tolerance were infected artificially by R. solani isolates: R1, R28a and R28b. These isolates belong to the second anastomosis group (AG), which is usually highly pathogenic to beet roots. The aim of the experiment was to test whether the tolerance of sugar beet genotypes to R. solani AG 2 prevents both root rot, and damping-off of seedlings, induced by the pathogen. Sugar beet lines tolerant to brown root rot in laboratory tests were significantly less sensitive to infection of the seedlings by R. solani AG 2 isolates in comparison to control cultivars. Rhizoctonia solani AG 2 isolates demonstrated considerable differences in pathogenicity against seedlings of sugar beet lines and cultivars. The strongest infection of sugar beet seedlings occurred with the isolate R28b. The greatest tolerance to infection by AG 2 isolates was found for the S5 and S3 breeding lines.


Plant Disease ◽  
2014 ◽  
Vol 98 (3) ◽  
pp. 419-419 ◽  
Author(s):  
C. Zhao ◽  
X. H. Wu

Sugar beet (Beta vulgaris L.) is grown worldwide as the second largest sugar crop. Sugar beet crown and root rot is an economically serious disease mainly caused by Rhizoctonia solani (teleomorph Thanatephorus cucumeris) AG 2-2 and AG 4 (1). In July 2010, at the 25- to 27-leaf stage, symptoms typically associated with crown and root rot, including dark brown to black lesions at the base of the petioles or circular to oval dark lesions (up to 10.0 mm in diameter) at the taproot, were observed on 15% of sugar beet plants collected from three sites in Shanxi Province, northern China. Pieces of internal root tissues cut from the margins between symptomatic and healthy-appearing tissue were disinfected with 0.5% NaOCl for 2 min, rinsed three times with sterile water, then placed on water ager (WA) for incubation at 25°C in the dark. After 2 days, single hyphal tips of three Rhizoctonia-like isolates (designated SX-RSD1, SX-RSD2, and SX-RSD3) were transferred to potato dextrose ager (PDA). Colonies of all isolates were brown and developed dark brown sclerotia (0.5 to 1.0 mm diameter) on the media surface after 4 and 7 days, respectively. Mycelia were branched at right angles with septa near the branches and slight constrictions at the bases of the branches were present. Average hyphal diameters of the three isolates were 8.1, 7.3, and 7.6 μm, respectively. Hyphal cells were determined to be multinucleate (4 to 9 nuclei per cell) by staining with 4′-6-diamidino-2-phenylindole (DAPI) (2). Anastomosis groups were determined by pairing with reference strains (kindly provided by N. Kondo, Hokkaido University, Japan) (2), and all three isolates anastomosed with R. solani AG-2-2IIIB. All three isolates grew well on PDA at 35°C, which separates AG-2-2IIIB from AG-2-2 IV. The internal transcribed spacer (ITS) region of rDNA was amplified from genomic DNA of these isolates with primers ITS1 (5′-TCCGATGGTGAACCTGCGG-3′)/ITS4 (5′-TCCTCCGCTTATTGATATGC-3′). Sequences (GenBank Accession Nos. KC413984, KC413985, and KC413986) were over 99% identical to those of 19 R. solani AG-2-2 IIIB isolates (e.g., FJ492146.3; strain F510). Therefore, based on the molecular characteristics and the anastomosis assay, these three isolates were identified as R. solani AG-2-2IIIB. To determine the pathogenicity of the isolates, wheat seeds were autoclaved twice for 60 min at 121°C on consecutive days and inoculated with each isolate (3). Subsequently, wheat seeds (three seeds per plant) were placed around 8-week-old sugar beet (cv. HI0305) plants at 2 cm intervals to each root and 10 mm deep in soil. Plants were grown at 25 to 27°C for 7 days in a glasshouse. All inoculated plants developed symptoms of root rot, whereas control plants inoculated with sterilized wheat seeds remained healthy. R. solani AG-2-2IIIB was consistently re-isolated from the symptomatic root tissue and was confirmed by both morphological and molecular characteristics described above, fulfilling Koch's postulates. To our knowledge, this is the first report of R. solani AG-2-2IIIB on sugar beet in Shanxi Province of China. R. solani AG2-2IIIB has been reported to be pathogenic on wheat in China (4), which is often grown in rotation with sugar beet. This rotation could increase the risk of soilborne infection to either crop by R. solani AG2-2IIIB. References: (1) R. M. Harveson et al. Compendium of Beet Diseases and Pests, American Phytopathological Society. St. Paul, MN. 2009. (2) W. C. Kronland and M. E. Stanghellini. Phytopathology. 78:820, 1988. (3) M. J. Lehtonen et al. Plant Pathol. 57:141, 2008. (4) D. Z. Yu et al., Hubei Agric. Sci. 3:39, 2000.


Plant Disease ◽  
1997 ◽  
Vol 81 (3) ◽  
pp. 245-249 ◽  
Author(s):  
Carol E. Windels ◽  
Rita A. Kuznia ◽  
Jack Call

In 1993, hymenia of Thanatephorus cucumeris occurred on petioles of sugar beet leaves, but disease was not observed on leaves, crowns, or roots. Of 33 cultures isolated from sugar beet, 28 were identified as Rhizoctonia solani AG-3 (from four fields planted to potatoes in 1992) and five isolates were AG-5 (from one field planted to wheat in 1992). These isolates of R. solani AG-3 and AG-5 were nonpathogenic to moderately pathogenic on sugar beet seedlings (stands ranged from 49 to 95%). The same isolates were nonpathogenic when inoculated on 8-week-old sugar beet roots (root rot indices were ≤1 [0 to 7 scale]). All isolates of R. solani AG-3 (but none of AG-5) formed sclerotia on roots. Disease indices (0 to 4 scale) on potato sprouts at 10°C were low, did not differ significantly (P = 0.05) among isolates and the control in either of two experiments, and averaged 0.9 for 14 isolates of AG-3, 0.5 for three isolates of AG-5, and 0.5 in the control. All isolates of AG-3 (but none of AG-5) formed sclerotia on potato seed pieces. When potato sprouts were grown at 25°C, disease indices were low (averaged 0.4 in each of two experiments), but four isolates of AG-3 and three of AG-5 had disease indices significantly (P = 0.05) higher than those of the uninoculated control. Sclerotia were not observed. The presence of hymenia of T. cucumeris is significant in that sexual reproduction and inoculum production occurred on a nonhost crop and were related to AGs of R. solani associated with the previous crop (AG-3 for potato and AG-5 for wheat).


Plant Disease ◽  
2000 ◽  
Vol 84 (5) ◽  
pp. 596-596 ◽  
Author(s):  
R. M. Harveson

Sugar beet (Beta vulgaris L.) plants exhibiting dull green and chlorotic foliage were first observed in a field near Dalton, NE, in late July 1999. Root symptoms included distal tip rot with internal, yellow-brown, water-soaked tissues. Isolations on MBV medium (1) consistently yielded Aphanomyces cochlioides Drechs. Water cultures produced primary zoospores that encysted at the tips of sporangiophores, followed by release of secondary zoospores within 12 h. Seedlings inoculated with zoospores began to die 2 weeks after emergence in a greenhouse. Symptoms on hypocotyls began as water-soaked lesions that turned black and thread-like. The causal agent was reisolated from infected seedlings, completing Koch's postulates. The disease was subsequently found in more than 15 separate fields, representing 5 of 11 sugar beet-growing counties in Nebraska and 1 county in Wyoming. In October, plants from the same fields were observed with stunted, distorted roots and superficial, scabby lesions associated with latent A. cochlioides infection. The pathogen could not be isolated from this stage but was confirmed by observing mature oospores within thin, stained sections under a microscope. The sections were additionally mixed with sterile potting soil and planted in the greenhouse with sugar beets. Several weeks after emergence, seedlings began to die, and the pathogen was reisolated. This represents the first report of Aphanomyces root rot and its spread in the Central High Plains. It also confirms that the described latent symptoms on sugar beet are caused by A. cochlioides. Reference: (1). W. F. Pfender et al. Plant Dis. 68:845, 1984.


2007 ◽  
pp. 161-171 ◽  
Author(s):  
Vera Stojsin ◽  
Dragana Budakov ◽  
Barry Jacobsen ◽  
Eva Grimme ◽  
Ferenc Bagi ◽  
...  

Rhizoctonia solani (K?hn) is one of the most important sugar beet pathogens Rhizoctonia solani anastomosis groups (AGs) 2-2 and 4 are proven to be the most common pathogenic strains on sugar beet. AG 2-2 (intraspecific groups IIIB and IV) can cause root and crown rot while damping-off of seedlings is most frequently attributed to AG 4. Four isolates of R. solani from sugar beet roots showing characteristic crown and root rot symptoms, collected from different localities in Vojvodina Province, were chosen and compared to the well-characterized R. solani isolate R9, AG 2-2 IV, from the USA. All Vojvodinian isolates showed medium level of pathogenicity and were able to cause crown and root rot symptoms on inoculated sugar beet roots. Based on anastomosis reaction, isolates from Vojvodina did not belong to the AG 2-2 group. Sequencing of the ITS (internal transcribed spacer) region of ribosomal DNA was performed on the Vojvodinian isolates from R9 in order to determine their relatedness. Sequence analysis showed that these isolates were different than R9 and were closely related (99-100% sequence homology) to anastomosis group 4, subgroup HG II.


Sign in / Sign up

Export Citation Format

Share Document