Implementation of absorbing boundary conditions in dynamic simulation of the material point method

2021 ◽  
Vol 22 (11) ◽  
pp. 870-881 ◽  
Author(s):  
Zhi-gang Shan ◽  
Zhe-xian Liao ◽  
You-kou Dong ◽  
Dong Wang ◽  
Lan Cui
2019 ◽  
Vol 212 ◽  
pp. 257-274 ◽  
Author(s):  
Y. Bing ◽  
M. Cortis ◽  
T.J. Charlton ◽  
W.M. Coombs ◽  
C.E. Augarde

2021 ◽  
Author(s):  
Bodhinanda Chandra ◽  
Veronika Singer ◽  
Tobias Teschemacher ◽  
Roland Wüchner ◽  
Antonia Larese

AbstractIn many geomechanics applications, material boundaries are subjected to large displacements and deformation. Under these circumstances, the application of boundary conditions using particle methods, such as the material point method (MPM), becomes a challenging task since material boundaries do not coincide with the background mesh. This paper presents a formulation of penalty augmentation to impose nonhomogeneous, nonconforming Dirichlet boundary conditions in implicit MPM. The penalty augmentation is implemented utilizing boundary particles, which can move either according to or independently from the material deformation. Furthermore, releasing contact boundary condition, as well as the capability to accommodate slip boundaries, is introduced in the current work. The accuracy of the proposed method is assessed in both 2D and 3D cases, by convergence analysis reaching the analytical solution and by comparing the results of nonconforming and classical grid-conforming simulations.


2017 ◽  
Vol 113 (1) ◽  
pp. 130-152 ◽  
Author(s):  
Michael Cortis ◽  
William Coombs ◽  
Charles Augarde ◽  
Michael Brown ◽  
Andrew Brennan ◽  
...  

AIAA Journal ◽  
1999 ◽  
Vol 37 ◽  
pp. 912-918
Author(s):  
M. E. Hayder ◽  
Fang Q. Hu ◽  
M. Y. Hussaini

2020 ◽  
Vol 66 (4) ◽  
pp. 773-793 ◽  
Author(s):  
Arman Shojaei ◽  
Alexander Hermann ◽  
Pablo Seleson ◽  
Christian J. Cyron

Abstract Diffusion-type problems in (nearly) unbounded domains play important roles in various fields of fluid dynamics, biology, and materials science. The aim of this paper is to construct accurate absorbing boundary conditions (ABCs) suitable for classical (local) as well as nonlocal peridynamic (PD) diffusion models. The main focus of the present study is on the PD diffusion formulation. The majority of the PD diffusion models proposed so far are applied to bounded domains only. In this study, we propose an effective way to handle unbounded domains both with PD and classical diffusion models. For the former, we employ a meshfree discretization, whereas for the latter the finite element method (FEM) is employed. The proposed ABCs are time-dependent and Dirichlet-type, making the approach easy to implement in the available models. The performance of the approach, in terms of accuracy and stability, is illustrated by numerical examples in 1D, 2D, and 3D.


Author(s):  
Xuchen Han ◽  
Theodore F. Gast ◽  
Qi Guo ◽  
Stephanie Wang ◽  
Chenfanfu Jiang ◽  
...  

2021 ◽  
Vol 112 ◽  
pp. 103904
Author(s):  
Fabricio Fernández ◽  
Jhonatan E.G. Rojas ◽  
Eurípedes A. Vargas ◽  
Raquel Q. Velloso ◽  
Daniel Dias

Computation ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 8
Author(s):  
Chendi Cao ◽  
Mitchell Neilsen

Dam embankment breaches caused by overtopping or internal erosion can impact both life and property downstream. It is important to accurately predict the amount of erosion, peak discharge, and the resulting downstream flow. This paper presents a new model based on the material point method to simulate soil and water interaction and predict failure rate parameters. The model assumes that the dam consists of a homogeneous embankment constructed with cohesive soil, and water inflow is defined by a hydrograph using other readily available reach routing software. The model uses continuum mixture theory to describe each phase where each species individually obeys the conservation of mass and momentum. A two-grid material point method is used to discretize the governing equations. The Drucker–Prager plastic flow model, combined with a Hencky strain-based hyperelasticity model, is used to compute soil stress. Water is modeled as a weakly compressible fluid. Analysis of the model demonstrates the efficacy of our approach for existing examples of overtopping dam breach, dam failures, and collisions. Simulation results from our model are compared with a physical-based breach model, WinDAM C. The new model can capture water and soil interaction at a finer granularity than WinDAM C. The new model gradually removes the granular material during the breach process. The impact of material properties on the dam breach process is also analyzed.


Sign in / Sign up

Export Citation Format

Share Document