Diagnostic Sensitivity and Specificity of a Participatory Disease Surveillance Method for Highly Pathogenic Avian Influenza in Household Chicken Flocks in Indonesia

2012 ◽  
Vol 56 (2) ◽  
pp. 377-380 ◽  
Author(s):  
M. Robyn ◽  
W. B. Priyono ◽  
L. M. Kim ◽  
E. Brum
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Knut Madslien ◽  
Torfinn Moldal ◽  
Britt Gjerset ◽  
Sveinn Gudmundsson ◽  
Arne Follestad ◽  
...  

Abstract Background Several outbreaks of highly pathogenic avian influenza (HPAI) caused by influenza A virus of subtype H5N8 have been reported in wild birds and poultry in Europe during autumn 2020. Norway is one of the few countries in Europe that had not previously detected HPAI virus, despite widespread active monitoring of both domestic and wild birds since 2005. Results We report detection of HPAI virus subtype H5N8 in a wild pink-footed goose (Anser brachyrhynchus), and several other geese, ducks and a gull, from south-western Norway in November and December 2020. Despite previous reports of low pathogenic avian influenza (LPAI), this constitutes the first detections of HPAI in Norway. Conclusions The mode of introduction is unclear, but a northward migration of infected geese or gulls from Denmark or the Netherlands during the autumn of 2020 is currently our main hypothesis for the introduction of HPAI to Norway. The presence of HPAI in wild birds constitutes a new, and ongoing, threat to the Norwegian poultry industry, and compliance with the improved biosecurity measures on poultry farms should therefore be ensured. [MK1]Finally, although HPAI of subtype H5N8 has been reported to have very low zoonotic potential, this is a reminder that HPAI with greater zoonotic potential in wild birds may pose a threat in the future. [MK1]Updated with a sentence emphasizing the risk HPAI pose to poultry farms, both in the Abstract and in the Conclusion-section in main text, as suggested by Reviewer 1 (#7).


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1274
Author(s):  
Jihee Kim ◽  
Jae-Yeon Park ◽  
Jihoon Ryu ◽  
Hyun-Jin Shin ◽  
Jung-Eun Park

Highly pathogenic avian influenza (HPAI) virus is a causative agent of systemic disease in poultry, characterized by high mortality. Rapid diagnosis is crucial for the control of HPAI. In this study, we aimed to develop a differential diagnostic method that can distinguish HPAI from low pathogenic avian influenza (LPAI) viruses using dual split proteins (DSPs). DSPs are chimeras of an enzymatic split, Renilla luciferase (RL), and a non-enzymatic split green fluorescent protein (GFP). Nanoparticles expressing DSPs, sialic acid, and/or transmembrane serine protease 2 (TMPRSS2) were generated, and RL activity was determined in the presence of HPAI or LPAI pseudotyped viruses. The RL activity of nanoparticles containing both DSPs was approximately 2 × 106 RLU, indicating that DSPs can be successfully incorporated into nanoparticles. The RL activity of nanoparticles containing half of the DSPs was around 5 × 101 RLU. When nanoparticles containing half of the DSPs were incubated with HPAI pseudotyped viruses at low pH, RL activity was increased up to 1 × 103 RLU. However, LPAI pseudotyped viruses produced RL activity only in the presence of proteases (trypsin or TMPRSS2), and the average RL activity was around 7 × 102 RLU. We confirmed that nanoparticle fusion assay also diagnoses authentic viruses with specificity of 100% and sensitivity of 91.67%. The data indicated that the developed method distinguished HPAI and LPAI, and suggested that the diagnosis using DSPs could be used for the development of differential diagnostic kits for HPAI after further optimization.


Sign in / Sign up

Export Citation Format

Share Document