Ex Vivo Biomechanical Comparison of Titanium Locking Plate, Stainless Steel Nonlocking Plate, and Tie-in External Fixator Applied by a Dorsal Approach on Ostectomized Humeri of Pigeons (Columba livia)

2019 ◽  
Vol 33 (1) ◽  
pp. 29
Author(s):  
Brett G. Darrow ◽  
Joseph P. Weigel ◽  
Cheryl B. Greenacre ◽  
Xie Xie ◽  
Peter K. Liaw ◽  
...  
2021 ◽  
Vol 8 ◽  
Author(s):  
Seth Bleakley ◽  
Ross Palmer ◽  
Nate Miller ◽  
Kirk McGilvray ◽  
Slobodan Tepic

A novel canine tibial plateau leveling osteotomy (TPLO) fixation device was recently developed with design features such as titanium alloy (TA) material, distal monocortical screw fixation, and a point contact undersurface specifically targeted to reduce surgical site infection rates by ensuring tissue perfusion under the plate. The strength of the novel TPLO construct was compared with that of a predicate stainless steel (SS) locking plate construct with bicortical screws in 16 paired cadaveric canine limbs. The mean loads to failure were 716.71 ± 109.50 N (range 455.69–839.69 N) and 629.50 ± 176.83 N (range 272.58–856.18 N) in the TA and SS groups, respectively. The average ratio of the loads to failure of the paired specimens was 1.18 (p = 0.031). No failure of the TA constructs involved the distal fixation with monocortical screws. Substantial mechanical equivalence of this novel TA monocortical/bicortical fixation construct to an established SS bicortical screw fixation construct is demonstrated. Clinical investigation of potential merits of this novel TA, monocortical/bicortical locking screw/plate system is now warranted.


2008 ◽  
Vol 21 (02) ◽  
pp. 140-146
Author(s):  
M. R. Edwards ◽  
S. P. James ◽  
W. S. Dernell ◽  
R. J. Scott ◽  
A. M. Bachand ◽  
...  

SummaryThe biomechanical characteristics of 1.2 mm diameter allogeneic cortical bone pins harvested from the canine tibia were evaluated and compared to 1.1 mm diameter stainless steel pins and 1.3 mm diameter polydioxanone (PDS) pins using impact testing and four-point bending. The biomechanical performance of allogeneic cortical bone pins using impact testing was uniform with no significant differences between sites, side, and gender. In four-point bending, cortical bone pins harvested from the left tibia (204.8 ± 77.4 N/mm) were significantly stiffer than the right tibia (123.7 ± 54.4 N/mm, P=0.0001). The site of bone pin harvest also had a significant effect on stiffness, but this was dependent on interactions with gender and side. Site C in male dogs had the highest mean stiffness in the left tibia (224.4 ± 40.4 N/mm), but lowest stiffness in the right tibia (84.9 ± 24.2 N/mm). Site A in female dogs had the highest mean stiffness in the left tibia (344.9 ± 117.4 N/mm), but lowest stiffness in the right tibia (60.8 ± 3.7 N/mm). The raw and adjusted bending properties of 1.2 mm cortical bone pins were significantly better than 1.3 mm PDS pins, but significantly worse than 1.1 mm stainless steel pins (P<0.0001). In conclusion, cortical bone pins may be suitable as an implant for fracture fixation based on initial biomechanical comparison to stainless steel and PDS pins used in clinical practice.


Author(s):  
Esa V. Eskelinen ◽  
Ari P. Suhonen ◽  
Juha V. Virolainen ◽  
William D. Liska

Abstract Objectives The purpose of this study was to compare the load at failure, stiffness and mode of failure between three types of tibial tuberosity transposition fixation techniques: (a) pin and figure-8 tension band wire (Pin-TBW), (b) locking plate with pin and a tension band wire (Plate-Pin-TBW) and (c) locking plate with a pin (Plate-Pin). Methods Six pairs of raccoon dog cadaveric tibiae were tested in Phase I Pin-TBW versus Plate-Pin-TBW and seven pairs in Phase II Plate-Pin-TBW versus Plate-Pin. One limb of each pair was randomly assigned to one of two groups for each phase. A tensile force was applied to the patellar ligament until construct failure. Results Pin-TBW (342N ± 54.7N) failed at a lower load than Plate-Pin-TBW (469N ± 77.3N), p = 0.00748, with all Pin-TBW failing by fracture and the majority of Plate-Pin-TBW failing by rupture of patellar ligament. Pin-TBW group Phase I, normalized with Plate-Pin-TBW Phase I, failed at a lower load than Plate-Pin group Phase II, normalized with Plate-Pin-TBW Phase II, p = 0.00467. There was no significant difference in mean load at failure, stiffness or mode at failure between the groups in the Phase II study. Clinical Significance Although ex vivo mechanical testing does not replicate the postoperative live dog or cat, these results demonstrate lower construct strength of the Pin-TBW construct compared with the Plate-Pin construct in the raccoon dog cadaver model.


2015 ◽  
Vol 9 (6) ◽  
pp. 361-369
Author(s):  
L.R. Mesquita ◽  
L.A.L. Muzzi ◽  
J.T. Lima ◽  
R.A.L. Muzzi ◽  
A.C.C. Lacreta Junior ◽  
...  

Author(s):  
Paul J. Switaj ◽  
Daniel Fuchs ◽  
Mohammed Alshouli ◽  
Avinash G. Patwardhan ◽  
Leonard I. Voronov ◽  
...  

2021 ◽  
Author(s):  
Dejan Blažević ◽  
Janoš Kodvanj ◽  
Petra Adamović ◽  
Dinko Vidović ◽  
Zlatko Trobonjača ◽  
...  

Abstract BackgroundGood clinical outcomes for locking plates as an external fixator to treat tibial fractures have been reported. However, external locking plate fixation is still generally rarely performed. This study aimed to compare the stability of external locking plate fixator with that of conventional external fixator for extraarticular proximal tibial fractures, using finite element analysis. MethodsThree models were constructed: (1) external locking plating of proximal tibial fracture with lateral proximal tibial locking plate and 5-mm screws (ELP), (2) conventional external fixation of proximal tibial fracture with an 11-mm rod and 5-mm Schanz screws (EF-11), and (3) conventional external fixation of proximal tibial fracture with a 7-mm rod and 5-mm Schanz screws (EF-7). The stress distribution, displacement at the fracture gap, and stiffness of the three finite element models at 30-, 40-, 50-, and 60-mm plate–rod offset from the lateral surface of the lateral condyle of the tibia were determined. ResultsThe conventional external fixator showed higher stiffness than did the external locking plate fixator. In all models, the stiffness decreased as the distance of the plate–rod from the bone surface increased. The maximum stiffness was 121.06 N/mm in the EF-11 model with 30-mm tibia–rod offset. In the EF-7 model group, the maximum stiffness was 40.00 N/mm in the model with 30-mm tibia–rod offset. In the ELP model group, the maximum stiffness was 35.79 N/mm in the model with 30-mm tibia–plate offsetConclusionsExternal locking plate fixation is more flexible than conventional external fixation, which can influence secondary bone healing. External locking plate fixation requires the placement of the plate as close as possible to the skin, which allow low-profile design, because the increased distance of the plate from bone can be too flexible for bone healing.


Sign in / Sign up

Export Citation Format

Share Document