scholarly journals Climate Change in Remote Mountain Regions: A Throughfall-Exclusion Experiment to Simulate Monsoon Failure in the Himalayas

2017 ◽  
Vol 37 (3) ◽  
pp. 294 ◽  
Author(s):  
Norbu Wangdi ◽  
Kuenzang Om ◽  
Cheten Thinley ◽  
Dorji Drukpa ◽  
Tshewang Dorji ◽  
...  
2019 ◽  
Vol 232 ◽  
pp. 759-771 ◽  
Author(s):  
Stefano Terzi ◽  
Silvia Torresan ◽  
Stefan Schneiderbauer ◽  
Andrea Critto ◽  
Marc Zebisch ◽  
...  

2021 ◽  
Author(s):  
Christian Huggel ◽  
Simon K. Allen ◽  
Indra D. Bhatt ◽  
Rithodi Chakraborty ◽  
Fabian Drenkhan ◽  
...  

<p>Mountains cover about a quarter of the Earth’s land surface and are home to or serve a substantial fraction of the global population with essential ecosystem services, in particular water, food, energy, and recreation. While mountain systems are expected to be highly exposed to climate change, we currently lack a comprehensive global picture of the extent to which environmental and human systems in mountain regions have been affected by recent anthropogenic climate change.</p><p>Here we undertake an unprecedented effort to detect observed impacts of climate change in mountains regions across all continents. We follow the approach implemented in the IPCC 5<sup>th</sup> Assessment Report (AR5) and follow-up research where we consider whether a natural or human system has changed beyond its baseline behavior in the absence of climate change, and then attribute the observed change to different drivers, including anthropogenic climate change. We apply an extensive review of peer-reviewed and grey literature and identify more than 300 samples of impacts (aggregate and case studies). We show that a wide range of natural and human systems in mountains have been affected by climate change, including the cryosphere, the water cycle and water resources, terrestrial and aquatic ecosystems, energy production, infrastructure, agriculture, health, migration, tourism, community and cultural values and disasters. Our assessment documents that climate change impacts are observed in mountain regions on all continents. However, the explicit distinction of different drivers contributing to or determining an observed change is often highly challenging; particularly due to widespread data scarcity in mountain regions. In that context, we were also able to document a high amount of impacts in previously under-reported continents such as Africa and South America. In particular, we have been able to include a substantial number of place-based insights from local/indigenous communities representing important alternative worldviews.</p><p>The role of human influence in observed climate changes is evaluated using data from multiple gridded observational climate products and global climate models. We find that anthropogenic climate change has a clear and discernable fingerprint in changing natural and human mountain systems across the globe. In the cryosphere, ecosystems, water resources and tourism the contribution of anthropogenic climate change to observed changes is significant, showing the sensitivity of these systems to current and future climate change. Furthermore, our analysis reveals the need to consider the plurality of knowledge systems through which climate change impacts are being understood in mountain regions. Such attempts at inclusivity, which addresses issues of representation and justice, should be deemed necessary in exploring climate change impacts.</p>


Author(s):  
Thomas Kohler ◽  
André Wehrli ◽  
Elbegzaya Batjargal ◽  
Sam Kanyamibwa ◽  
Daniel Maselli ◽  
...  

Author(s):  
Luna Bharati ◽  
Pabitra Gurung ◽  
Priyantha Jayakody

Assessment of surface and groundwater resources and water availability for different sectors is a great challenge in Nepal mainly due to data limitations. In this study, the Soil Water Assessment Tool (SWAT) was used to simulate the hydrology and to calculate sub-basin wise water balances in the Koshi Basin, Nepal. The impacts of Climate Change (CC) projections from four GCMs (CNRM-CM3, CSIRO-Mk3.0,ECHam5 and MIROC 3.2) on the hydrology of the basin were also calculated. This paper summarizes some of the key results. The full report of the study is in preparation.The basin can be divided into the trans-mountain, central mountain, eastern mountain, eastern hill and central hill regions. Results show that current precipitation is highest in the central mountain and eastern mountain regions during both the dry and wet seasons. Water balance results showed that Actual ET as well as Runoff is also highest in the central and eastern mountain regions followed by the mid-hills. Results from climate change projections showed that average temperature will increase in the 2030’s by 0.7-0.9° Celsius. Results for 2030s projections also show that during the dry season, precipitation increases in the trans-mountain but decreases in the other regions for both A2 and B1 scenarios. During the wet season, the MarkSim projections show a decrease in precipitation in all the regions. Net water yields also increased for the trans-mountain zone during the dry season but show varying results during the monsoon. Assessment of projected future flow time series showed that there will be an increase in the number of extreme events; i.e., both low flows and large floods. There is however; a high degree of uncertainty in the projected climate data as the relative standard deviation was quite high.DOI: http://dx.doi.org/10.3126/hn.v11i1.7198 Hydro Nepal Special Issue: Conference Proceedings 2012 pp.18-22


2016 ◽  
Vol 29 (3) ◽  
pp. 348
Author(s):  
Devendra Gauchan ◽  
Bal Krishna Joshi ◽  
Sajal Sthapit ◽  
Krishna Ghimire ◽  
Subash Gautam ◽  
...  

2020 ◽  
Vol 13 (6) ◽  
pp. 744-753
Author(s):  
Nara O Vogado ◽  
Michael J Liddell ◽  
Susan G W Laurance ◽  
Mason J Campbell ◽  
Alexander W Cheesman ◽  
...  

Abstract Aims Anthropogenic climate change is predicted to increase mean temperatures and rainfall seasonality. How tropical rainforest species will respond to this climate change remains uncertain. Here, we analysed the effects of a 4-year experimental throughfall exclusion (TFE) on an Australian endemic palm (Normambya normanbyi) in the Daintree rainforest of North Queensland, Australia. We aimed to understand the impact of a simulated reduction in rainfall on the species’ physiological processes and fruiting phenology. Methods We examined the fruiting phenology and ecophysiology of this locally abundant palm to determine the ecological responses of the species to drought. Soil water availability was reduced overall by ~30% under a TFE experiment, established in May 2015. We monitored monthly fruiting activity for 8 years in total (2009–2018), including 4 years prior to the onset of the TFE. In the most recent year of the study, we measured physiological parameters including photosynthetic rate, stomatal conductance and carbon stable isotopes (δ 13C, an integrated measure of water use efficiency) from young and mature leaves in both the dry and wet seasons. Important Findings We determined that the monthly fruiting activity of all palms was primarily driven by photoperiod, mean solar radiation and mean temperature. However, individuals exposed to lower soil moisture in the TFE decreased significantly in fruiting activity, photosynthetic rate and stomatal conductance. We found that these measures of physiological performance were affected by the TFE, season and the interaction of the two. Recovery of fruiting activity in the TFE palms was observed in 2018, when there was an increase in shallow soil moisture compared with previous years in the treatment. Our findings suggest that palms, such as the N. normanbyi, will be sensitive to future climate change with long-term monitoring recommended to determine population-scale impacts.


Sign in / Sign up

Export Citation Format

Share Document