Effects of Adaptive Statistical Iterative Reconstruction-V Technology on the Image Quality and Radiation Dose of Unenhanced and Enhanced CT Scans of the Piglet Abdomen

2021 ◽  
Author(s):  
Xiao-ying Zhao ◽  
Lu-lu Li ◽  
Jian Song ◽  
Jing Chen ◽  
Ji Xu ◽  
...  

To investigate the optimal pre- and post-adaptive statistical iterative reconstruction-V (ASiR-V) levels in pediatric abdominal computed tomography (CT) to minimize radiation exposure and maintain image quality using an animal model. A total of 10 standard piglets were selected and scanned to obtain unenhanced and enhanced images under different pre-ASiR-V conditions. The corresponding images were obtained using ASiR-V algorithm at different post-ASiR-V levels. CT value, signal-to-noise ratio (SNR), contrast noise ratio (CNR) of abdominal tissues, subjective image score, and radiation dose of unenhanced and enhanced scans were analyzed. With the increase of pre-ASiR-V level, the radiation dose in piglets gradually decreased (P < 0.05). Within the same group of pre-ASiR-V, the image noise was decreased (P < 0.05) by increasing post-ASiR-V level. There was no statistical difference between SNR and CNR values. In unenhanced CT, the subjective score of the images with the combination of 40% pre- and 60% post-ASiR-V levels had no statistical difference compared to the combination of 0% pre- and 60% post-ASiR-V levels, while the radiation dose decreased by 31.6%. In the enhanced CT, the subjective image score with the 60% pre- and 60% post-ASiR-V combination had no statistical difference compared to the 0% pre- and 60% post-ASiR-V combination, while the radiation dose was reduced by 48.9%. The combined use of pre- and post-ASiR-V maintains image quality at the reduced radiation dose. The optimal level for unenhanced CT is 40% pre-combined with 60% post-ASiR-V, while that for enhanced CT is 60% pre- combined with 60% post-ASiR-V in pediatric abdominal CT.

2018 ◽  
Vol 59 (10) ◽  
pp. 1194-1202 ◽  
Author(s):  
Helle Precht ◽  
Oke Gerke ◽  
Jesper Thygesen ◽  
Kenneth Egstrup ◽  
Søren Auscher ◽  
...  

Background Computed tomography (CT) technology is rapidly evolving and software solution developed to optimize image quality and/or lower radiation dose. Purpose To investigate the influence of adaptive statistical iterative reconstruction (ASIR) at different radiation doses in coronary CT angiography (CCTA) in detailed image quality. Material and Methods A total of 160 CCTA were reconstructed as follows: 55 scans with filtered back projection (FBP) (650 mA), 51 scans (455 mA) with 30% ASIR (ASIR30), and 54 scans (295 mA) with 60% ASIR (ASIR60). For each reconstruction, subjective image quality was assessed by five independent certified cardiologists using a visual grading analysis (VGA) with five predefined image quality criteria consisting of a 5-point scale. Objective measures were contrast, noise, and contrast-to-noise ratio (CNR). Results The CTDIvol resulted in 10.3 mGy, 7.4 mGy, and 4.6 mGy for FBP, ASIR30, and ASIR60, respectively. Homogeneity of the left ventricular lumen was the sole aspect in which reconstruction algorithms differed with a decreasing effect for ASIR60 compared to FBP (estimated odds ratio [OR] = 0.49 [95% confidence interval (CI) = 0.32–0.76; P = 0.001]). Decreased sharpness and spatial- and low-contrast resolutions were observed when using ASIR instead of FBP, but differences were not statistically significant. Concerning objective measurements, noise increased significantly for ASIR30 (OR = 1.08; 95% CI = 1.02–1.14; P = 0.006) and ASIR60 (OR = 1.06; 95% CI = 1.01–1.12; P = 0.034) compared to FBP. Conclusion ASIR significantly decreased the subjectively assessed homogeneity of the left ventricular lumen and increased the objectively measured noise compared to FBP. Considering these results, ASIR at a reduced radiation dose should be implemented with caution.


Sign in / Sign up

Export Citation Format

Share Document