Predicted structure of the bovine calcitonin gene-related peptide and the carboxy-terminal flanking peptide of bovine calcitonin precursor

1991 ◽  
Vol 6 (2) ◽  
pp. 147-152 ◽  
Author(s):  
K. Collyear ◽  
S. I. Girgis ◽  
G. Saunders ◽  
I. MacIntyre ◽  
G. Holt

ABSTRACT We have isolated from a bovine genomic library a clone which contains the calcitonin (CT) and CT gene-related peptide (CGRP) sequences, using probes representing the human CT and CGRP sequences. Sequence analysis has identified the nucleotide sequence coding for bovine CT, its C-terminal flanking peptide and bovine CGRP. The deduced amino acid sequence of bovine CGRP revealed a significant homology with other CGRPs so far reported. It differs by only one amino acid from rat CGRPα and porcine CGRP, and by three and four amino acids from human CGRPβ and α respectively. Bovine CT has, however, only 14 out of 32 residues in common with human CT. As in the human CT precursor, the C-terminal flanking peptide of bovine CT precursor is a 21 amino acid peptide. It shares only 11 residues in common with its human counterpart. This study thus provides further evidence that CGRP, in contrast to CT and its C-terminal flanking peptide, is a highly conserved molecule.

2019 ◽  
Vol 2019 (4) ◽  
Author(s):  
Anthony P. Davenport ◽  
Stephen A. Douglas ◽  
Alain Fournier ◽  
Adel Giaid ◽  
Henry Krum ◽  
...  

The urotensin-II (U-II) receptor (UT, nomenclature as agreed by the NC-IUPHAR Subcommittee on the Urotensin receptor [26, 36, 89]) is activated by the endogenous dodecapeptide urotensin-II, originally isolated from the urophysis, the endocrine organ of the caudal neurosecretory system of teleost fish [7, 88]. Several structural forms of U-II exist in fish and amphibians. The goby orthologue was used to identify U-II as the cognate ligand for the predicted receptor encoded by the rat gene gpr14 [20, 62, 68, 70]. Human urotensin-II, an 11-amino-acid peptide [20], retains the cyclohexapeptide sequence of goby U-II that is thought to be important in ligand binding [53, 11]. This sequence is also conserved in the deduced amino-acid sequence of rat urotensin-II (14 amino-acids) and mouse urotensin-II (14 amino-acids), although the N-terminal is more divergent from the human sequence [19]. A second endogenous ligand for the UT has been discovered in rat [83]. This is the urotensin II-related peptide, an octapeptide that is derived from a different gene, but shares the C-terminal sequence (CFWKYCV) common to U-II from other species. Identical sequences to rat urotensin II-related peptide are predicted for the mature mouse and human peptides [32]. UT exhibits relatively high sequence identity with somatostatin, opioid and galanin receptors [89].


2004 ◽  
Vol 279 (19) ◽  
pp. 20387-20391 ◽  
Author(s):  
Daniela Koller ◽  
Lars M. Ittner ◽  
Roman Muff ◽  
Knut Husmann ◽  
Jan A. Fischer ◽  
...  

The receptors for the neuropeptide calcitonin (CT) gene-related peptide (CGRP) and the multifunctional peptide hormone adrenomedullin (AM) are calcitonin-like receptor (CLR)/receptor-activity-modifying protein (RAMP) 1 and CLR/RAMP2 heterodimers, respectively. Here, the amino acid sequence TRNKIMT, corresponding to the residues 14-20 of the N terminus of the mouse (m) CLR, was found to be required for a functional mCLR/RAMP2 AM receptor. The deletion of amino acids 14-20 (Δ14-20) or their substitution by alanine (14-20A) did not affect the heterodimerization of the mCLR with mRAMP1 or mRAMP2, and the levels of expression at the surface of transiently transfected COS-7 cells were not altered. In mRAMP1/mCLR- or mRAMP1/mCLR-(Δ14-20)-expressing cells CGRP stimulated cAMP formation with EC50values of 0.12 ± 0.01 and 1.5 ± 0.4 nm, respectively. In mRAMP2/mCLR-expressing cells the EC50of AM was 0.8 ± 0.2 nm. However, in cells expressing mRAMP2/mCLR-(Δ14-20) up to 10-6mAM failed to stimulate cAMP production. In mRAMP2/mCLR-(14-20A) expressing cells the cAMP response to AM was minimally restored, and the EC50was >100 nm. In conclusion, the deletion of the amino acid sequence TRNKIMT of the extreme N terminus of the mCLR maintained CGRP receptor function of mRAMP1/receptor heterodimers, but AM no longer activated the mutant mCLR-(Δ14-20) in the presence of mRAMP2. The TRNKIMT sequence is required for normal mCLR/mRAMP2 association, and as a consequence, high affinity AM binding signaling the activation of adenylyl cyclase.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Anthony P. Davenport ◽  
Stephen A. Douglas ◽  
Alain Fournier ◽  
Adel Giaid ◽  
Henry Krum ◽  
...  

The urotensin-II (U-II) receptor (UT, nomenclature as agreed by the NC-IUPHAR Subcommittee on the Urotensin receptor [26, 36, 93]) is activated by the endogenous dodecapeptide urotensin-II, originally isolated from the urophysis, the endocrine organ of the caudal neurosecretory system of teleost fish [7, 92]. Several structural forms of U-II exist in fish and amphibians [93]. The goby orthologue was used to identify U-II as the cognate ligand for the predicted receptor encoded by the rat gene gpr14 [2, 20, 63, 69, 72]. Human urotensin-II, an 11-amino-acid peptide [20], retains the cyclohexapeptide sequence of goby U-II that is thought to be important in ligand binding [61, 53, 10]. This sequence is also conserved in the deduced amino-acid sequence of rat urotensin-II (14 amino-acids) and mouse urotensin-II (14 amino-acids), although the N-terminal is more divergent from the human sequence [19]. A second endogenous ligand for the UT has been discovered in rat [86]. This is the urotensin II-related peptide, an octapeptide that is derived from a different gene, but shares the C-terminal sequence (CFWKYCV) common to U-II from other species. Identical sequences to rat urotensin II-related peptide are predicted for the mature mouse and human peptides [32]. UT exhibits relatively high sequence identity with somatostatin, opioid and galanin receptors [93].


2013 ◽  
Vol 4 ◽  
pp. 65-74
Author(s):  
Khadka Bahadur Chhetri

Protein is the polypeptide chain of amino-acid sequence. Proteins of all species, from bacteria to humans, are made up from the same set of 20 standard amino acids. In order to carry out their function they must take a particular shape which is known as fold. All the enzymes hormones and antibodies are also proteins. To treat certain toxic-microorganism or invader we need certain antigen-antibody complex in the organisms. Just as amino-acid sequence forms the proteins, the polynucleotide sequence forms the nucleic acids. The gene is a part of DNA macromolecule responsible for the synthesis of protein chains. There are 20 amino-acids responsible for the formation of protein and 4 nucleotides responsible for the formation of DNA (RNA). Therefore, we can say that protein text is written in 20-letter and the DNA (RNA) text is written in 4-letter language. The information contained in genes in DNA is transferred to mRNA during transcription.The Himalayan Physics Vol. 4, No. 4, 2013 Page: 65-74 Uploaded date: 12/23/2013 


1988 ◽  
Vol 18 (12) ◽  
pp. 1595-1602 ◽  
Author(s):  
J. R. Kenny ◽  
B. P. Dancik ◽  
L. Z. Florence ◽  
F. E. Nargang

We have determined the nucleotide sequence of the carboxy-terminal portion of an actin gene (PAc1-A) isolated from Pinuscontorta var. latifolia (Engelm.). Pairwise comparisons of both nucleotide and deduced amino acid sequences were made among PAc1-A, the soybean actins SAc3 and SAc1, maize actin MAc1, chicken β-actin, and yeast β-actin. Of the other actins SAc3 was most similar to the PAc1-A amino acid sequence (91.3% identity) and yeast actin the least similar (78.3% identity). The intron in PAc1-A is present at the same location as the third intron found in MAc1, SAc1, and SAc3 actin genes. This conservation of intron position is unusual when compared with nonplant actin genes.


1993 ◽  
Vol 13 (1) ◽  
pp. 123-132
Author(s):  
A D Sharrocks ◽  
H Gille ◽  
P E Shaw

The serum response factor (p67SRF) binds to a palindromic sequence in the c-fos serum response element (SRE). A second protein, p62TCF binds in conjunction with p67SRF to form a ternary complex, and it is through this complex that growth factor-induced transcriptional activation of c-fos is thought to take place. A 90-amino-acid peptide, coreSRF, is capable for dimerizing, binding DNA, and recruiting p62TCF. By using extensive site-directed mutagenesis we have investigated the role of individual coreSRF amino acids in DNA binding. Mutant phenotypes were defined by gel retardation and cross-linking analyses. Our results have identified residues essential for either DNA binding or dimerization. Three essential basic amino acids whose conservative mutation severely reduced DNA binding were identified. Evidence which is consistent with these residues being on the face of a DNA binding alpha-helix is presented. A phenylalanine residue and a hexameric hydrophobic box are identified as essential for dimerization. The amino acid phasing is consistent with the dimerization interface being presented as a continuous region on a beta-strand. A putative second alpha-helix acts as a linker between these two regions. This study indicates that p67SRF is a member of a protein family which, in common with many DNA binding proteins, utilize an alpha-helix for DNA binding. However, this alpha-helix is contained within a novel domain structure.


1989 ◽  
Vol 9 (8) ◽  
pp. 3369-3376
Author(s):  
B Su ◽  
A L Bothwell

The Ly-6E/A protein is a murine cell surface protein expressed at high levels on activated peripheral T cells. The only linkage known to be responsible for its association with the plasma membrane is a phosphatidylinositol-glycan (PI-G) moiety. To examine the biosynthesis of this structure, we constructed a series of mutants of Ly-6E that were expressed in COS cells by using transient-transfection procedures. When 12 or 20 carboxy-terminal residues were deleted from the primary translation product, the PI-G modification was completely abolished and the mutant proteins became secreted. Addition of the PI-G tail was partially inhibited when the charged 12-amino-acid peptide found as a cytoplasmic tail on the transmembrane form of LFA-3 was added to the COOH terminus of the Ly-6E protein. Proteolytic cleavage occurred on this mutant protein, but the PI-G moiety was added to only 50% of the molecules. Changing an Asn residue to a Lys at the hypothetical cleavage site resulted in a PI-G-linked protein having a detectable alteration in electrophoretic mobility. This finding raises the possibility that proteolytic cleavage at other amino acid sites may occur and that PI-G attachment can occur at this new site. A model identifying two regions that may act as necessary signals for the biosynthesis of the PI-G tail is presented.


1987 ◽  
Vol 7 (6) ◽  
pp. 2173-2179
Author(s):  
P C Yelick ◽  
R Balhorn ◽  
P A Johnson ◽  
M Corzett ◽  
J A Mazrimas ◽  
...  

The nuclei of mouse spermatozoa contain two protamine variants, mouse protamine 1 (mP1) and mouse protamine 2 (mP2). The amino acid sequence predicted from mP1 cDNAs demonstrates that mP1 is a 50-amino-acid protein with strong homology to other mammalian P1 protamines. Nucleotide sequence analysis of independently isolated, overlapping cDNA clones indicated that mP2 is initially synthesized as a precursor protein which is subsequently processed into the spermatozoan form of mP2. The existence of the mP2 precursor was confirmed by amino acid composition and sequence analysis of the largest of a set of four basic proteins isolated from late-step spermatids whose synthesis is coincident with that of mP1. The sequence of the first 10 amino acids of this protein, mP2 precursor 1, exactly matches that predicted from the nucleotide sequence of cDNA and genomic mP2 clones. The amino acid composition of isolated mP2 precursor 1 very closely matches that predicted from the mP2 cDNA nucleotide sequence. Sequence analysis of the amino terminus of isolated mature mP2 identified the final processing point within the mP2 precursor. These studies demonstrated that mP2 is synthesized as a precursor containing 106 amino acids which is processed into the mature, 63-amino-acid form found in spermatozoa.


1986 ◽  
Vol 235 (3) ◽  
pp. 895-898 ◽  
Author(s):  
M S López de Haro ◽  
A Nieto

An almost full-length cDNA coding for pre-uteroglobin from hare lung was cloned and sequenced. The derived amino acid sequence indicated that hare pre-uteroglobin contained 91 amino acids, including a signal peptide of 21 residues. Comparison of the nucleotide sequence of hare pre-uteroglobin cDNA with that previously reported for the rabbit gene indicated five silent point substitutions and six others leading to amino acid changes in the coding region. The untranslated regions of both pre-uteroglobin mRNAs were very similar. The amino acid changes observed are discussed in relation to the different progesterone-binding abilities of both homologous proteins.


Sign in / Sign up

Export Citation Format

Share Document