Insulin-like growth factor-I mRNA expression in the interstitial cells of the rat testis

1993 ◽  
Vol 11 (3) ◽  
pp. 319-324 ◽  
Author(s):  
A Moore ◽  
C-L C Chen ◽  
J R E Davis ◽  
I D Morris

ABSTRACT IGF-I mRNA has been demonstrated in testicular tissue and, more recently, localized specifically to Leydig cells. This study investigated the expression of IGF-I and side-chain cleavage enzyme (SCC) mRNA in two preparations of rat interstitial testicular cells which were separated by buoyant density into Leydig cell-enriched and -depleted fractions. RNA was prepared from interstitial cells obtained from the testes of untreated adult and immature rats and adult rats treated with human chorionic gonadotrophin (hCG) or ethane dimethanesulphonate (EDS; to destroy Leydig cells). IGF-I mRNA was detected in all samples, with five major transcripts ranging from 7·5 to 0·6 kb. Leydig cells (3β-hydroxysteroid dehydrogenase-positive and sensitive to EDS) expressed abundant IGF-I and SCC mRNAs, and levels of both were increased following hCG treatment. However, in addition, IGF-I mRNA which was derived from non-Leydig interstitial cells was detected, in the complete absence of SCC message, either in the more buoyant interstitial cells or in both interstitial cell fractions following the destruction of Leydig cells by EDS treatment. IGF-I expression in the Leydig cell-depleted cell fraction was also increased by hCG treatment, and it is therefore suggested that at least part of this non-Leydig interstitial cell IGF-I mRNA originates in Leydig cell precursors. In conclusion, Leydig cells are not the sole origin of IGF-I mRNA in the testis, and the non-Leydig cell expression may be an important component of testicular IGF-I production.

2019 ◽  
Vol 34 (9) ◽  
pp. 1621-1631 ◽  
Author(s):  
J Eliveld ◽  
E A van den Berg ◽  
J V Chikhovskaya ◽  
S K M van Daalen ◽  
C M de Winter-Korver ◽  
...  

Abstract STUDY QUESTION Is it possible to differentiate primary human testicular platelet-derived growth factor receptor alpha positive (PDGFRα+) cells into functional Leydig cells? SUMMARY ANSWER Although human testicular PDGFRα+ cells are multipotent and are capable of differentiating into steroidogenic cells with Leydig cell characteristics, they are not able to produce testosterone after differentiation. WHAT IS KNOWN ALREADY In rodents, stem Leydig cells (SLCs) that have been identified and isolated using the marker PDGFRα can give rise to adult testosterone-producing Leydig cells after appropriate differentiation in vitro. Although PDGFRα+ cells have also been identified in human testicular tissue, so far there is no evidence that these cells are true human SLCs that can differentiate into functional Leydig cells in vitro or in vivo. STUDY DESIGN, SIZE, DURATION We isolated testicular cells enriched for interstitial cells from frozen–thawed fragments of testicular tissue from four human donors. Depending on the obtained cell number, PDGFRα+-sorted cells of three to four donors were exposed to differentiation conditions in vitro to stimulate development into adipocytes, osteocytes, chondrocytes or into Leydig cells. We compared their cell characteristics with cells directly after sorting and cells in propagation conditions. To investigate their differentiation potential in vivo, PDGFRα+-sorted cells were transplanted in the testis of 12 luteinizing hormone receptor-knockout (LuRKO) mice of which 6 mice received immunosuppression treatment. An additional six mice did not receive cell transplantation and were used as a control. PARTICIPANTS/MATERIALS, SETTING, METHODS Human testicular interstitial cells were cultured to Passage 3 and FACS sorted for HLA-A,B,C+/CD34−/PDGFRα+. We examined their mesenchymal stromal cell (MSC) membrane protein expression by FACS analyses. Furthermore, we investigated lineage-specific staining and gene expression after MSC trilineage differentiation. For the differentiation into Leydig cells, PDGFRα+-sorted cells were cultured in either proliferation or differentiation medium for 28 days, after which they were stimulated either with or without hCG, forskolin or dbcAMP for 24 h to examine the increase in gene expression of steroidogenic enzymes using qPCR. In addition, testosterone, androstenedione and progesterone levels were measured in the culture medium. We also transplanted human PDGFRα+-sorted testicular interstitial cells into the testis of LuRKO mice. Serum was collected at several time points after transplantation, and testosterone was measured. Twenty weeks after transplantation testes were collected for histological examination. MAIN RESULTS AND THE ROLE OF CHANCE From primary cultured human testicular interstitial cells at Passage 3, we could obtain a population of HLA-A,B,C+/CD34−/PDGFRα+ cells by FACS. The sorted cells showed characteristics of MSC and were able to differentiate into adipocytes, chondrocytes and osteocytes. Upon directed differentiation into Leydig cells in vitro, we observed a significant increase in the expression of HSD3B2 and INSL3. After 24 h stimulation with forskolin or dbcAMP, a significantly increased expression of STAR and CYP11A1 was observed. The cells already expressed HSD17B3 and CYP17A1 before differentiation but the expression of these genes were not significantly increased after differentiation and stimulation. Testosterone levels could not be detected in the medium in any of the stimulation conditions, but after stimulation with forskolin or dbcAMP, androstenedione and progesterone were detected in culture medium. After transplantation of the human cells into the testes of LuRKO mice, no significant increase in serum testosterone levels was found compared to the controls. Also, no human cells were identified in the interstitium of mice testes 20 weeks after transplantation. LARGE SCALE DATA N/A LIMITATIONS, REASONS FOR CAUTION This study was performed using tissue from only four donors because of limitations in donor material. Because of the need of sufficient cell numbers, we first propagated cells to passage 3 before FACS of the desired cell population was performed. We cannot rule out this propagation of the cells resulted in loss of stem cell properties. WIDER IMPLICATIONS OF THE FINDINGS A lot of information on Leydig cell development is obtained from rodent studies, while the knowledge on human Leydig cell development is very limited. Our study shows that human testicular interstitial PDGFRα+ cells have different characteristics compared to rodent testicular PDGFRα+ cells in gene expression levels of steroidogenic enzymes and potential to differentiate in adult Leydig cells under comparable culture conditions. This emphasizes the need for confirming results from rodent studies in the human situation to be able to translate this knowledge to the human conditions, to eventually contribute to improvements of testosterone replacement therapies or establishing alternative cell therapies in the future, potentially based on SLCs. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by Amsterdam UMC, location AMC, Amsterdam, the Netherlands. All authors declare no competing interests.


1993 ◽  
Vol 136 (3) ◽  
pp. 439-NP ◽  
Author(s):  
A. Moore ◽  
I. D. Morris

ABSTRACT The epidermal growth factor (EGF) receptor is expressed in a wide variety of cell types and is known to be present in the testis of many species including man. In the present study, specific 125 I-labelled EGF binding was observed in isolated interstitial cell preparations from both the intact and Leydig cell-depleted rat testis. It was demonstrated that the population of cells to which 125I-labelled EGF binds has a different buoyant density from either of the two adult Leydig cell populations, and remains unchanged in the absence of Leydig cells following in-vivo treatment with ethane dimethane sulphonate (EDS). Cells of this density (1·064 g/ml) identified by electron microscopy were fusiform mesenchymal cells, identical to those suggested by others to be able to differentiate into Leydig cells in vitro, i.e. Leydig cell precursors. In a culture system using two interstitial cell preparations of different buoyant densities from immature rats, both EGF and transforming growth factor-α (TGF-α) caused increased [3H]thymidine incorporation in the less dense cell preparation. TGF-α was more potent than EGF. EGF increased testosterone production in both fractions in amounts which could be related to the amount of 3β-hydroxysteroid dehydrogenase (3β-HSD)-positive cells. This study demonstrated that rat Leydig cells (defined as those cells which bind 125I-labelled human chorionic gonadotrophin, have distinct buoyant densities, are 3β-HSD positive and are sensitive to EDS), do not bind 125I-labelled EGF. Rather, EGF binds to a mesenchymal cell without LH receptors which is resistant to EDS. Growth factors which act via the EGF receptor increased [3H]thymidine incorporation in a Leydig cell-depleted interstitial fraction which may reflect an action upon the progenitor of the mature Leydig cell. Journal of Endocrinology (1993) 136, 439–446


1987 ◽  
Vol 112 (2) ◽  
pp. 311-NP ◽  
Author(s):  
H. D. Nicholson ◽  
R. T. S. Worley ◽  
S. E. F. Guldenaar ◽  
B. T. Pickering

ABSTRACT An oxytocin-like peptide is present in the interstitial cells of the testis, and testicular concentrations of oxytocin have been shown to increase seminiferous tubule movements in vitro. We have used the drug ethan-1,2-dimethanesulphonate (EDS), which depletes the Leydig cell population of the adult rat testis, to examine further the relationships between the Leydig cell, testicular oxytocin and tubular movements. Adult rats were injected i.p. with a single dose of EDS (75 mg/kg) or of vehicle (25% dimethyl sulphoxide). Histological study 3 and 10 days after treatment with EDS showed a reduction in the number of interstitial cells, and levels of oxytocin immunoreactivity were undetectable by radioimmunoassay. Immunostaining revealed very few oxytocin-reactive cells. Spontaneous contractile activity of the seminiferous tubules in vitro was also dramatically reduced, but could be restored by the addition of oxytocin to the medium. Four weeks after EDS treatment, the interstitial cells were similar to those in the control animals both in number and in immunostaining; immunoassayable oxytocin was present and tubular movements were normal. The EDS effect, seen at 3 and 10 days, was not altered by daily treatment with testosterone. However, repopulation of the testes with oxytocin-immunoreactive cells was not seen until 6 weeks in the testosterone-treated animals. We suggest that the Leydig cells are the main source of oxytocin immunoreactivity in the testis and that this oxytocin is involved in modulating seminiferous tubule movements and the resultant sperm transport. The results also imply that testosterone does not play a major role in controlling tubular activity in the mature rat. J. Endocr. (1987) 112, 311–316


1992 ◽  
Vol 134 (2) ◽  
pp. 247-255 ◽  
Author(s):  
A. Moore ◽  
K. Findlay ◽  
I. D. Morris

ABSTRACT Replicative DNA synthesis (125I-labelled iododeoxy-uridine incorporation) was measured in interstitial cells prepared from rat testes and separated by Percoll density gradient centrifugation. Leydig cells were identified by 125I-labelled human chorionic gonadotrophin (hCG) binding and 3β-hydroxysteroid dehydrogenase histochemistry. Continuous density gradients indicated that interstitial cell DNA synthesis was not associated with Leydig cells, and was greater in cells from the immature than from the mature rat testis. Fractionation of cells by discontinuous density gradients into Leydig cell-rich and -depleted pools did not result in a similar enrichment of DNA synthesis. Treatment of the adult rat with hCG increased DNA synthesis into both fractions but oestrogen had no effect. DNA synthesis was greater in cells from the immature rat but, in contrast to the adult, in-vivo hCG treatment had no effect, whilst oestrogen decreased synthesis. To characterize the cells synthesizing DNA further, interstitial cells were prepared from testes in which the Leydig cells were depleted by in-vivo treatment with ethane dimethanesulphonate (EDS) or depleted in their germ cells by treatment in utero with busulphan. EDS treatment had no effect on DNA synthesis by the interstitial cells in spite of the 125I-labelled hCG binding being markedly reduced. Similarly, busulphan treatment was also without effects upon DNA synthesis. Fluorescence-activated cell cycle analysis of cells from both fractions from germ cell-depleted testes indicated that only a small proportion (3%) of the interstitial cells were actively dividing and this was almost doubled in cells from the germ cell-depleted immature rat testes. The experiments showed that the majority of cells in the interstitium of the rat testes do not synthesize DNA and are not undergoing cell division. The small proportion of cells that are dividing are probably not Leydig cells. The experiments have identified a dividing interstitial cell population and, in consideration of the changes in the immature and mature rat as well as the effects of hormone treatment, they may be regarded as putative Leydig cell precursors. Journal of Endocrinology (1992) 134, 247–255


1995 ◽  
Vol 146 (1) ◽  
pp. 15-21 ◽  
Author(s):  
R Aguilar ◽  
F Antón ◽  
C Bellido ◽  
E Aguilar ◽  
F Gaytan

Abstract Testicular serotonin (5HT) concentrations were determined by HPLC in the testes of rats treated neonatally with oestradiol benzoate (EB) and in adult rats treated with the Leydig cell cytotoxic ethylene dimethane sulphonate (EDS). 5HT concentrations were related to mast cell numbers. EB-treated rats showed an accumulation of mast cells in the testes at 35 and 70 days of age and increased 5HT concentrations in both the interstitial fluid and the testicular capsule, whereas no increases in 5HT concentrations or in the number of mast cells were found for the ventral prostate of these animals. On the contrary, 5HT concentrations were not related to the number of Leydig cells. In EB-treated rats, in which Leydig cells were nearly absent at 35 days of age, 5HT concentrations were significantly increased. Furthermore, EDS-treated rats did not show significant changes in 5HT concentrations, in spite of the elimination of Leydig cells. These data suggest that mast cells are a major source of serotonin in the rat testis. Journal of Endocrinology (1995) 146, 15–21


1984 ◽  
Vol 102 (3) ◽  
pp. 319-327 ◽  
Author(s):  
R. M. Sharpe ◽  
I. Cooper ◽  
D. G. Doogan

ABSTRACT Adult rats were made unilaterally cryptorchid (UCD) and 6–7 weeks later Leydig cells were isolated from the scrotal and abdominal testes and their capacity to secrete testosterone in vitro was compared. Basal testosterone production by Leydig cells from the abdominal testes of UCD rats was lowered, compared with cells from the contralateral scrotal testes, whilst their responsiveness to both human chorionic gonadotrophin and an LH releasing hormone agonist was enhanced two- to threefold (P< 0·001) compared both with cells from the contralateral scrotal testes and with cells isolated from untreated rats of the same age. In the UCD rats, concentrations of testosterone in testicular interstitial fluid (IF) were reduced (P< 0·001) by 70–90% in abdominal, compared with scrotal, testes. A similar reduction was evident in the levels of testosterone in spermatic venous blood, and both this decrease and that in IF levels of testosterone varied according to the degree of testicular involution. The ontogeny of the above changes was investigated. After induction of unilateral cryptorchidism, the weight of the abdominal compared with the scrotal testis declined slowly, such that by day 5 there was only a 25% reduction in weight compared with a 70% reduction by day 40. In contrast, the levels of testosterone in IF from abdominal testes declined rapidly, such that by day 5 an 80% reduction was attained, compared with scrotal testes, with little further change by day 40. Hormone-stimulated testosterone production by Leydig cells isolated from the abdominal testes was unchanged or marginally reduced over the first 3 days compared with cells from the scrotal testes, but by day 5 there was a significant increase in responsiveness; this increase was of smaller magnitude than that evident at day 40. These results suggest a possible association between the fall in intratesticular levels of testosterone induced by unilateral cryptorchidism and the Leydig cell hypertrophy and hyper-responsiveness that occurs in the same testes. The implications with respect to altered Sertoli–Leydig cell interaction are discussed. J. Endocr. (1984) 102, 319–327


1987 ◽  
Vol 114 (3) ◽  
pp. 459-467 ◽  
Author(s):  
V. Papadopoulos ◽  
P. Kamtchouing ◽  
M. A. Drosdowsky ◽  
M. T. Hochereau de Reviers ◽  
S. Carreau

ABSTRACT Production of testosterone and oestradiol-17β by Leydig cells from adult rats was stimulated by LH or dibutyryl cyclic AMP (10 and 2·5-fold respectively). The addition of spent medium from normal, hemicastrated or γ-irradiated rat seminiferous tubule cultures, as well as from Sertoli cell cultures, to purified Leydig cells further enhanced both basal (44 and 53% for testosterone and oestradiol-17β respectively) and LH-stimulated (56 and 18%) steroid output. Simultaneously, a decrease (20–30%) in intracellular cyclic AMP levels was observed. This stimulating factor (or factors) secreted by the Sertoli cells is different from LHRH, is of proteinic nature and has a molecular weight ranging between 10 000 and 50 000; its synthesis is not controlled by FSH nor by testosterone. This factor(s) involved in rat Leydig cell steroidogenesis, at a step beyond the adenylate cyclase, does not require protein synthesis for testosterone formation whereas it does for oestradiol-17β production. It should be noted that a germ cell–Sertoli cell interaction modulates the synthesis of this factor(s). J. Endocr. (1987) 114, 459–467


1990 ◽  
Vol 127 (1) ◽  
pp. 47-NP ◽  
Author(s):  
D. S. Keeney ◽  
R. L. Sprando ◽  
B. Robaire ◽  
B. R. Zirkin ◽  
L. L. Ewing

ABSTRACT The purpose of this study was to determine whether Leydig cell volume and function could recover fully from long-term LH deprivation upon restoration of endogenous LH secretion, and whether the restoration of LH would elicit a mitogenic response, i.e. stimulate Leydig cell proliferation or affect Leydig cell number per testis. LH secretion was inhibited by treating adult rats with testosterone and oestradiol-filled (TO) silicone elastomer implants (16 weeks), and was restored by removing the implants. Changes in serum concentrations of LH and FSH, LH-stimulated testosterone secretion by testes perfused in vitro, Leydig cell volume and number per testis, average Leydig cell volume and Leydig cell [3H]thymidine incorporation were measured at weekly intervals following implant removal. The TO implants inhibited (P < 0·01) LH secretion, but serum concentrations of FSH were not significantly different (P > 0·10) from control values. After implant removal, serum LH returned to control values within 1 week, whereas serum FSH increased twofold (P < 0·01) and returned to control values at 4 weeks. LH-stimulated in-vitro testosterone secretion was inhibited by more than 99% in TO-implanted rats, but increased (P < 0·01) to 80% of control values by 8 weeks after implant removal. The total volume of Leydig cells per testis and the volume of an average Leydig cell were 14 and 19% of control values respectively, after 16 weeks of TO implantation (P < 0·01), but returned to 83 and 86% of controls (P > 0·10) respectively, by 6 weeks after implant removal. Leydig cell proliferation ([3H]thymidine labelling index) was low (< 0·1%) in both control and TO-implanted rats, increased (P < 0·01) fivefold from 1 to 4 weeks after implant removal and then declined to control values at 6 weeks. The increase in Leydig cell [3H]thymidine incorporation was mimicked by treating TO-implanted rats with exogenous LH, but not FSH. Leydig cells were identified in both the interstitium and the lamina propria of the seminiferous epithelium. The proportion of Leydig cell nuclei in the lamina propria was 30-fold greater (P < 0·01) at 1 and 3 weeks after implant removal (3%) compared with that for control and TO-implanted rats (0·1%). Total Leydig cell number per testis was marginally but not significantly (P = 0·06) decreased in rats treated with TO implants for 16 weeks when compared with controls (18·4±2·2 vs 25·4±1·2 × 106). Three weeks after implant removal, the numbers of Leydig cells per testis were identical (26·8±2·8 × 106) to those in control animals. These results not only demonstrate dramatic morphogenic effects of LH on mature rat Leydig cells, but also suggest that endogenous LH might be mitogenic at least to a subpopulation of Leydig cells. Journal of Endocrinology (1990) 127,47–58


2004 ◽  
Vol 167 (5) ◽  
pp. 935-944 ◽  
Author(s):  
Michail S. Davidoff ◽  
Ralf Middendorff ◽  
Grigori Enikolopov ◽  
Dieter Riethmacher ◽  
Adolf F. Holstein ◽  
...  

The cells responsible for production of the male sex hormone testosterone, the Leydig cells of the testis, are post-mitotic cells with neuroendocrine characteristics. Their origin during ontogeny and regeneration processes is still a matter of debate. Here, we show that cells of testicular blood vessels, namely vascular smooth muscle cells and pericytes, are the progenitors of Leydig cells. Resembling stem cells of the nervous system, the Leydig cell progenitors are characterized by the expression of nestin. Using an in vivo model to induce and monitor the synchronized generation of a completely new Leydig cell population in adult rats, we demonstrate specific proliferation of vascular progenitors and their subsequent transdifferentiation into steroidogenic Leydig cells which, in addition, rapidly acquire neuronal and glial properties. These findings, shown to be representative also for ontogenetic Leydig cell formation and for the human testis, provide further evidence that cellular components of blood vessels can act as progenitor cells for organogenesis and repair.


1993 ◽  
Vol 138 (1) ◽  
pp. 107-114 ◽  
Author(s):  
A. Moore ◽  
I. D. Morris

ABSTRACT Insulin-like growth factor-I (IGF-I) peptide, receptors and binding proteins are present in the rodent testis, which strongly implies that IGF-I has one or more testicular functions. In the present study we provide further information to support the concept that IGF-I is an important local mediator in the testis. High concentrations of IGF-I were measurable in interstitial fluid by radioimmunoassay, and IGF-I-binding proteins (IGFBPs) were readily detectable in interstitial fluid by ligand blotting, the predominant type being IGFBP-2. In vitro, IGF-I bound to testicular interstitial cells which did not have 3β-hydroxysteroid dehydrogenase (3β-HSD) activity and which were resistant to ethane dimethanesulphonate treatment. In vitro, IGF-I receptor-mediated actions increased both steroidogenesis and DNA synthesis. Insulin stimulated DNA synthesis at concentrations appropriate to cross-react with the IGF-I receptor, and this effect was greater in a testicular interstitial Leydig cell-depleted cell population compared with a Leydig cell-enriched cell culture. Furthermore, combinations of epidermal growth factor or transforming growth factor -α together with insulin appeared to act synergistically, causing extremely large increases in [3 H]thymidine incorporation in the interstitial cells. These results support a paracrine and/or autocrine role for IGF-I in interstitial cell growth and development. Journal of Endocrinology (1993) 138, 107–114


Sign in / Sign up

Export Citation Format

Share Document