scholarly journals Molecular evolution of the growth hormone-releasing hormone/pituitary adenylate cyclase-activating polypeptide gene family. Functional implication in the regulation of growth hormone secretion

2000 ◽  
Vol 25 (2) ◽  
pp. 157-168 ◽  
Author(s):  
M Montero ◽  
L Yon ◽  
S Kikuyama ◽  
S Dufour ◽  
H Vaudry

Growth hormone-releasing hormone (GHRH) and pituitary adenylate cyclase-activating polypeptide (PACAP) belong to the same superfamily of regulatory neuropeptides and have both been characterized on the basis of their hypophysiotropic activities. This review describes the molecular evolution of the GHRH/PACAP gene family from urochordates to mammals and presents the hypothesis that the respective roles of GHRH and PACAP in the control of GH secretion are totally inverted in phylogenetically distant groups of vertebrates. In mammals, GHRH and PACAP originate from distinct precursors whereas, in all submammalian taxa investigated so far, including birds, amphibians and fish, a single precursor encompasses a GHRH-like peptide and PACAP. In mammals, GHRH-containing neurons are confined to the infundibular and dorsomedial nuclei of the hypothalamus while PACAP-producing neurons are widely distributed in hypothalamic and extrahypothalamic areas. In fish, both GHRH- and PACAP-immunoreactive neurons are restricted to the diencephalon and directly innervate the adenohypophysis. In mammals and birds, GHRH plays a predominant role in the control of GH secretion. In amphibians, both GHRH and PACAP are potent stimulators of GH release. In fish, PACAP strongly activates GH release whereas GHRH has little or no effect on GH secretion. The GHRH/PACAP family of peptides thus provides a unique model in which to investigate the structural and functional facets of evolution.

1989 ◽  
Vol 256 (2) ◽  
pp. E221-E226 ◽  
Author(s):  
G. D. Snyder ◽  
P. Yadagiri ◽  
J. R. Falck

Growth hormone secretion was stimulated in vitro by products of arachidonic acid epoxygenase, the epoxyeicosatrienoic acids. 5,6-Epoxyeicosatrienoic and 14,15-epoxyeicosatrienoic acid stimulated growth hormone release from an enriched population of somatotrophs (approximately 85%) by twofold. Inhibition of arachidonic acid metabolism by indomethacin did not affect growth hormone-releasing hormone stimulation of growth hormone release. In contrast, pretreatment of somatotrophs with an 11,12-isonitrile analogue of arachidonic acid that inhibits arachidonic acid epoxygenase, resulted in a 20-25% inhibition of growth hormone-releasing hormone-stimulated growth hormone release. 14,15-Epoxyeicosatrienoic acid stimulated a concentration-dependent increase (twofold) in the cytoplasmic concentration of adenosine 3',5'-cyclic monophosphate (cAMP) in the somatotrophs. 14,15-Epoxyeicosatrienoic acid also rapidly increased the intracellular free calcium concentration in somatotrophs from resting levels (approximately 80 nM) to greater than 250 nM. Growth hormone-releasing hormone increased the free intracellular calcium to 160-180 nM. Preincubation of somatotrophs with somatostatin inhibited growth hormone-releasing hormone-stimulated growth hormone secretion, cAMP accumulation, and 14,15-epoxyeicosatrienoic acid stimulated cAMP accumulation. These data are suggestive that the epoxyeicosatrienoic acids may have a role in the secretion of growth hormone.


1990 ◽  
Vol 24 (3) ◽  
pp. 129-134 ◽  
Author(s):  
Giovanni Murialdo ◽  
Francesco Zerbi ◽  
Ugo Filippi ◽  
Pietro Tosca ◽  
Stefano Fonzi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document