Vitamin D metabolites regulate osteocalcin synthesis and proliferation of human bone cells in vitro

1985 ◽  
Vol 105 (3) ◽  
pp. 391-396 ◽  
Author(s):  
H. Skjødt ◽  
J. A. Gallagher ◽  
J. N. Beresford ◽  
M. Couch ◽  
J. W. Poser ◽  
...  

ABSTRACT The effects of six natural vitamin D metabolites of potential biological and therapeutic interest, 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3), 25-hydroxyvitamin D3 (25-OH-D3), 24R,25-dihydroxyvitamin D3 (24R,25-(OH)2D3), 1,24R,25-trihydroxyvitamin D3 (1,24R,25-(OH)3D3), 25S,26-dihydroxyvitamin D3 (25S,26-(OH)2D3) and 1,25S,26-trihydroxyvitamin D3 (1,25S,26-(OH)3D3) on cell replication and expression of the osteoblastic phenotype in terms of osteocalcin production were examined in cultured human bone cells. At a dose of 5 × 10−12 mol/l, 1,25-(OH)2D3 stimulated cell proliferation, whereas at higher doses (5 × 10−9−5 × 10 −6 mol/l) cell growth was inhibited in a dose-dependent manner. The same pattern of effects was seen for the other metabolites in a rank order of potency: 1,25-(OH)2D3> 1,25S,26-(OH)3D3 = 1,24R,25-(OH)3D3>25S,26-(OH)2D3 = 24R,25-(OH)2D3 = 25-OH-D3. Synthesis of osteocalcin was induced by 1,25-(OH)2D3 in doses similar to those required to inhibit cell proliferation. Biphasic responses were observed for some of the metabolites in terms of osteocalcin synthesis, inhibitory effects becoming apparent at 5 × 10−6 mol/l. The cells did not secrete osteocalcin spontaneously. These results indicate that vitamin D metabolites may regulate growth and expression of differentiated functions of normal human osteoblasts. J. Endocr. (1985) 105, 391–396

1988 ◽  
Vol 116 (3) ◽  
pp. 435-441 ◽  
Author(s):  
S. A. Haining ◽  
J. H. Galloway ◽  
B. L. Brown ◽  
D. F. Guilland-Cumming

ABSTRACT It has recently been proposed that the action of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) on bone metabolism may be mediated by changes in phospholipid metabolism. The effects of vitamin D metabolites on the incorporation of radiolabelled precursors into corresponding phospholipid classes were investigated using cells arising from cultured explants of normal human bone with osteoblast-like characteristics. Treatment with 1,25-(OH)2D3 increased the incorporation of serine, measured as the ratio of [3H]serine in phosphatidylserine (PS) to [14C]ethanolamine in phosphatidylethanolamine (PE), in a time- and dose-dependent manner. The maximum effect on PS/PE of 141·6 ± 5·9% over control (P = 0·022) was observed at a dose of 0·1 nmol 1,25-(OH)2D3/l, maintained for 24 h. Incubations with 25-hydroxyvitamin D3 (0·1 μmol/l) and 24,25-dihydroxyvitamin D3 (10 nmol/l) had no effect. Supraphysiological doses (0·1 μmol/l) of 1,24,25- and 1,25,26-trihydroxyvitamin D3 showed similar effects to those of 1,25-(OH)2D3, emphasizing the importance of 1α-hydroxylation. Incorporation of [14C]choline into phosphatidylcholine, calculated as a ratio to PE, was not affected by treatment with vitamin D metabolites. However, [3H]inositol uptake into phosphatidylinositol was almost doubled when compared with control uptake within 2 h of treatment with 1,25-(OH)2D3 (0·1 μmol/l). This may be of relevance, considering the importance of phosphoinositide metabolism in influencing the intracellular calcium concentration. These results support a role for 1,25-(OH)2D3 in the modulation of phospholipid metabolism in human bone cells, which in turn may be involved in the action of 1,25-(OH)2D3 in bone mineralization. J. Endocr. (1988) 116,435–441


2016 ◽  
Vol 37 (5) ◽  
pp. 521-547 ◽  
Author(s):  
Peter J. Tebben ◽  
Ravinder J. Singh ◽  
Rajiv Kumar

AbstractHypercalcemia occurs in up to 4% of the population in association with malignancy, primary hyperparathyroidism, ingestion of excessive calcium and/or vitamin D, ectopic production of 1,25-dihydroxyvitamin D [1,25(OH)2D], and impaired degradation of 1,25(OH)2D. The ingestion of excessive amounts of vitamin D3 (or vitamin D2) results in hypercalcemia and hypercalciuria due to the formation of supraphysiological amounts of 25-hydroxyvitamin D [25(OH)D] that bind to the vitamin D receptor, albeit with lower affinity than the active form of the vitamin, 1,25(OH)2D, and the formation of 5,6-trans 25(OH)D, which binds to the vitamin D receptor more tightly than 25(OH)D. In patients with granulomatous disease such as sarcoidosis or tuberculosis and tumors such as lymphomas, hypercalcemia occurs as a result of the activity of ectopic 25(OH)D-1-hydroxylase (CYP27B1) expressed in macrophages or tumor cells and the formation of excessive amounts of 1,25(OH)2D. Recent work has identified a novel cause of non-PTH-mediated hypercalcemia that occurs when the degradation of 1,25(OH)2D is impaired as a result of mutations of the 1,25(OH)2D-24-hydroxylase cytochrome P450 (CYP24A1). Patients with biallelic and, in some instances, monoallelic mutations of the CYP24A1 gene have elevated serum calcium concentrations associated with elevated serum 1,25(OH)2D, suppressed PTH concentrations, hypercalciuria, nephrocalcinosis, nephrolithiasis, and on occasion, reduced bone density. Of interest, first-time calcium renal stone formers have elevated 1,25(OH)2D and evidence of impaired 24-hydroxylase-mediated 1,25(OH)2D degradation. We will describe the biochemical processes associated with the synthesis and degradation of various vitamin D metabolites, the clinical features of the vitamin D-mediated hypercalcemia, their biochemical diagnosis, and treatment.


Bone ◽  
1989 ◽  
Vol 10 (6) ◽  
pp. 483
Author(s):  
DB Evans ◽  
M Thavarajah ◽  
JA Kanis

1984 ◽  
Vol 66 (1) ◽  
pp. 103-107 ◽  
Author(s):  
R. M. Francis ◽  
M. Peacock ◽  
G. A. Taylor ◽  
J. H. Storer ◽  
B. E. C. Nordin

1. Radio-calcium absorption, plasma 25-hydroxyvitamin D [25-(OH)D] and 1,25-dihydroxyvitamin D [1,25-(OH)2D] concentrations were measured in 19 elderly women with, and 21 without, vertebral fractures, before and after treatment with 25-hydroxyvitamin D3 [25-(OH)D3], to establish whether malabsorption of calcium in elderly women with vertebral fractures has a cause different from that in elderly women without vertebral fractures. 2. Malabsorption of calcium and low plasma 25-(OH)D and 1,25-(OH)2D concentrations were common in both groups of women but there was no significant difference in these variables between the two groups. 3. After treatment with 40 μg of 25-(OH)D3 daily for 7 days, there was a significant increase in plasma 25-(OH)D and 1,25-(OH)2D in both groups of women, but radio-calcium absorption increased significantly only in the group without vertebral fractures. 4. Elderly women with vertebral fractures have malabsorption of calcium which is resistant to the action of vitamin D metabolites at concentrations which correct calcium malabsorption in elderly women without vertebral fractures.


1985 ◽  
Vol 105 (1) ◽  
pp. 79-85 ◽  
Author(s):  
I. R. Dickson ◽  
P. M. Maher

ABSTRACT When growth cartilage from rachitic chicks was cultured in the presence of the calcium-regulating hormone 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3), collagen resorption was increased and collagen synthesis decreased compared to control cultures containing no hormone. The minimum concentration of the hormone that caused a statistically significant inhibition of collagen synthesis was 10 −8 mol/l. Collagen synthesis by growth cartilage from normal chicks was also reduced by 1,25-(OH)2D3, showing that it was not an abnormal response of vitamin D-depleted tissue. 25-Hydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 also inhibited collagen synthesis by cultures of growth cartilage but only at higher metabolite concentrations. 1,25-Dihydroxyvitamin D3 (10−7 mol/l) did not significantly inhibit collagen synthesis by cultures of articular fibrocartilage and of sternal cartilage, tissues that do not calcify physiologically. The minimum concentration of 1,25-(OH)2D3 (10−9 mol/l) necessary to cause decreased collagen synthesis by embryonic chick calvaria was lower than the value obtained with growth cartilage; this suggests that bone cells may be more sensitive to the hormone in this respect than are growth cartilage chondrocytes. These findings provide evidence of a direct role of 1,25-(OH)2D3 in the control of endochondral bone formation which is consistent with its primary role in the maintenance of plasma calcium homeostasis. J. Endocr. (1985) 105, 79–85


2019 ◽  
Vol 106 (1) ◽  
pp. 3-13 ◽  
Author(s):  
William D. Fraser ◽  
Jonathan C. Y. Tang ◽  
John J. Dutton ◽  
Inez Schoenmakers

AbstractThe demand for measurement of vitamin D metabolites for clinical diagnosis and to advance our understanding of the role of vitamin D in human health has significantly increased in the last decade. New developments in technologies employed have enabled the separation and quantification of additional metabolites and interferences. Also, developments of immunoassays have changed the landscape. Programmes and materials for assay standardisation, harmonisation and the expansion of the vitamin D external quality assurance scheme (DEQAS) with the provision of target values as measured by a reference measurement procedure have improved standardisation, quality assurance and comparability of measurements. In this article, we describe developments in the measurement of the commonly analysed vitamin D metabolites in clinical and research practice. We describe current analytical approaches, discuss differences between assays, their origin, and how these may be influenced by physiological and experimental conditions. The value of measuring metabolites beyond 25 hydroxyvitamin D (25(OH)D), the marker of vitamin D status, in routine clinical practice is not yet confirmed. Here we provide an overview of the value and application of the measurement of 1,25 dihydroxyvitamin D, 24,25 dihydroxyvitamin D and free 25OHD in the diagnosis of patients with abnormalities in vitamin D metabolism and for research purposes.


1981 ◽  
Vol 27 (10) ◽  
pp. 1757-1760 ◽  
Author(s):  
M J Jongen ◽  
W J van der Vijgh ◽  
H J Willems ◽  
J C Netelenbos ◽  
P Lips

Abstract We describe a simultaneous assay for the principal vitamin D metabolites: 25-hydroxyvitamin D, 24-25-dihydroxyvitamin D, and 1,25-dihydroxyvitamin D. Special attention has been paid to simplification of the extensive extraction and purification procedures used in previously described simultaneous assays. All three metabolites were isolated with a single extraction step, followed by only one gradient liquid-chromatographic procedure. For final quantitation we used competitive protein binding assays, involving readily available binding proteins and commercially purchased tritiated vitamin D metabolites. Concentrations in the plasma of healthy subjects (mean age, 27 years), sampled during December were 51 (SD 17) nmol/L, 4.1 (SD 1.3) nmol/L, and 124 (SD 26) pmol/L for 25-hydroxyvitamin D, 24,25-dihydroxyvitamin D and 1,25-dihydroxyvitamin D, respectively. Intra- and interassay CVs for the three metabolites were 4.4 and 3.9%, 6.7 and 8.0%, and 7.0 and 4.8%, respectively.


1988 ◽  
Vol 254 (2) ◽  
pp. E150-E154
Author(s):  
T. O. Carpenter ◽  
M. L. Pendrak ◽  
C. S. Anast

Wilson's disease results in excess tissue accumulation of copper and is often complicated by skeletal and mineral abnormalities. We investigated vitamin D metabolism in rats fed a copper-laden diet rendering hepatic copper content comparable with that found in Wilson's disease. Injection of 25-hydroxyvitamin D3 [25(OH)D3] resulted in reduced 1,25-dihydroxyvitamin D [1,25(OH)2D] levels in copper-intoxicated rats. In vitro 25(OH)D-1 alpha-hydroxylase activity was impaired in renal mitochondria from copper-intoxicated animals. Activity was also inhibited in mitochondria from controls when copper was added to incubation media. Impaired conversion of 25(OH)D to 1,25(OH)2D occurs in copper intoxication and suggests that altered vitamin D metabolism is a potential factor in the development of bone and mineral abnormalities in Wilson's disease.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Youssra Dakroury ◽  
Alexandra E. Butler ◽  
Soha R. Dargham ◽  
Aishah Latif ◽  
Amal Robay ◽  
...  

Objective. Genetic studies have identified four Qatari genotypes: Q1 Arab, Bedouin; Q2 Asian/Persian; Q3 African; and a fourth admixed group not fitting into the previous 3 groups. This study was undertaken to determine if there was an increased risk of deficiency of vitamin D and its metabolites associated with differing genotypes, perhaps due to genetic differences in skin pigmentation. Methods. 398 Qatari subjects (220 type 2 diabetes and 178 controls) had their genotype determined by Affymetrix 500 k SNP arrays. Total values of 1,25-dihydroxyvitamin D (1,25(OH)2D), 25-hydroxyvitamin D (25(OH)D), 24,25-dihydroxyvitamin D (24,25(OH)2D), and 25-hydroxy-3epi-vitamin D (3epi-25(OH)D) concentrations were measured by the LC-MS/MS analysis. Results. The distribution was as follows: 164 (41.2%) genotyped Q1, 149 (37.4%) genotyped Q2, 31 (7.8%) genotyped Q3, and 54 (13.6%) genotyped “admixed.” Median levels of 25(OH)D and 3epi-25(OH)D did not differ across Q1, Q2, Q3, and “admixed” genotypes, respectively. 1,25(OH)2D levels were lower (p<0.04) between Q2 and the admixed groups, and 24,25(OH)2D levels were lower (p<0.05) between Q1 and the admixed groups. Vitamin D metabolite levels were lower in females for 25(OH)D, 1,25(OH)2D (p<0.001), and 24,25(OH)2D (p<0.006), but 3epi-25(OH)D did not differ (p<0.26). Diabetes prevalence was not different between genotypes. Total 1,25(OH)2D (p<0.001), total 24,25(OH)2D (p<0.001), and total 3epi-25(OH)D (p<0.005) were all significantly lower in diabetes patients compared to controls whilst the total 25(OH)D was higher in diabetes than controls (p<0.001). Conclusion. Whilst 25(OH)D levels did not differ between genotype groups, 1,25(OH)2D and 24,25(OH)2D were lower in the admixed group, suggesting that there are genetic differences in vitamin D metabolism that may be of importance in a population that may allow a more targeted approach to vitamin D replacement. This may be of specific importance in vitamin D replacement strategies with the Q2 genotype requiring less, and the other genotypes requiring more to increase 1,25(OH)2D. Whilst overall the group was vitamin D deficient, total 25(OH)D was higher in diabetes, but 1,25(OH)2D, 24,25(OH)2D, and 3epi-25(OH)D were lower in diabetes that did not affect the relationship to genotype.


Sign in / Sign up

Export Citation Format

Share Document