Calcium Malabsorption in Elderly Women with Vertebral Fractures: Evidence for Resistance to the Action of Vitamin D Metabolites on the Bowel

1984 ◽  
Vol 66 (1) ◽  
pp. 103-107 ◽  
Author(s):  
R. M. Francis ◽  
M. Peacock ◽  
G. A. Taylor ◽  
J. H. Storer ◽  
B. E. C. Nordin

1. Radio-calcium absorption, plasma 25-hydroxyvitamin D [25-(OH)D] and 1,25-dihydroxyvitamin D [1,25-(OH)2D] concentrations were measured in 19 elderly women with, and 21 without, vertebral fractures, before and after treatment with 25-hydroxyvitamin D3 [25-(OH)D3], to establish whether malabsorption of calcium in elderly women with vertebral fractures has a cause different from that in elderly women without vertebral fractures. 2. Malabsorption of calcium and low plasma 25-(OH)D and 1,25-(OH)2D concentrations were common in both groups of women but there was no significant difference in these variables between the two groups. 3. After treatment with 40 μg of 25-(OH)D3 daily for 7 days, there was a significant increase in plasma 25-(OH)D and 1,25-(OH)2D in both groups of women, but radio-calcium absorption increased significantly only in the group without vertebral fractures. 4. Elderly women with vertebral fractures have malabsorption of calcium which is resistant to the action of vitamin D metabolites at concentrations which correct calcium malabsorption in elderly women without vertebral fractures.

2016 ◽  
Vol 37 (5) ◽  
pp. 521-547 ◽  
Author(s):  
Peter J. Tebben ◽  
Ravinder J. Singh ◽  
Rajiv Kumar

AbstractHypercalcemia occurs in up to 4% of the population in association with malignancy, primary hyperparathyroidism, ingestion of excessive calcium and/or vitamin D, ectopic production of 1,25-dihydroxyvitamin D [1,25(OH)2D], and impaired degradation of 1,25(OH)2D. The ingestion of excessive amounts of vitamin D3 (or vitamin D2) results in hypercalcemia and hypercalciuria due to the formation of supraphysiological amounts of 25-hydroxyvitamin D [25(OH)D] that bind to the vitamin D receptor, albeit with lower affinity than the active form of the vitamin, 1,25(OH)2D, and the formation of 5,6-trans 25(OH)D, which binds to the vitamin D receptor more tightly than 25(OH)D. In patients with granulomatous disease such as sarcoidosis or tuberculosis and tumors such as lymphomas, hypercalcemia occurs as a result of the activity of ectopic 25(OH)D-1-hydroxylase (CYP27B1) expressed in macrophages or tumor cells and the formation of excessive amounts of 1,25(OH)2D. Recent work has identified a novel cause of non-PTH-mediated hypercalcemia that occurs when the degradation of 1,25(OH)2D is impaired as a result of mutations of the 1,25(OH)2D-24-hydroxylase cytochrome P450 (CYP24A1). Patients with biallelic and, in some instances, monoallelic mutations of the CYP24A1 gene have elevated serum calcium concentrations associated with elevated serum 1,25(OH)2D, suppressed PTH concentrations, hypercalciuria, nephrocalcinosis, nephrolithiasis, and on occasion, reduced bone density. Of interest, first-time calcium renal stone formers have elevated 1,25(OH)2D and evidence of impaired 24-hydroxylase-mediated 1,25(OH)2D degradation. We will describe the biochemical processes associated with the synthesis and degradation of various vitamin D metabolites, the clinical features of the vitamin D-mediated hypercalcemia, their biochemical diagnosis, and treatment.


1987 ◽  
Vol 72 (3) ◽  
pp. 329-334 ◽  
Author(s):  
Silvano Adami ◽  
G. Graziani ◽  
D. Tartarotti ◽  
R. Cappelli ◽  
S. Casati ◽  
...  

1. The response of circulating 1,25-dihydroxyvitamin D [l,25-(OH)2D] to challenge with vitamin D treatment both before and after 7–10 days of prednisone therapy (25 mg/day) was investigated in five anephric subjects, six patients with chronic renal failure (CRF), two patients with vitamin D intoxication and four patients with hypoparathyroidism. 2. In anephric subjects serum 25-hydroxyvitamin D [25-(OH)D] rose from 58 ± 48 (sd) to 377±221 (sd) nmol/l after administration of 150 μg of 25-(OH)D3 for 1 month. Serum l,25-(OH)2D, which was barely detectable in only two out of five patients under basal conditions, rose to 30 ± 21 pmol/l after 2 weeks of therapy with 25-(OH)D3, but fell to 10 ± 5 pmol/l during prednisone treatment. 3. In CRF patients circulating l,25-(OH)2D rose from 37 ± 24 to 58 ± 24 pmol/l during 25-(OH)D3 therapy, but fell to 41 ± 31 pmol/l during prednisone treatment. In two patients with rheumatoid arthritis, hypercalcaemia due to vitamin D intoxication was associated with raised levels of 1,25-(OH)2D (288 and 317 pmol/l). Administration of prednisore resulted in suppression of l,25-(OH)2D levels (132 and 96 pmol/l respectively) and reduction of serum calcium to within the normal range. 4. In the hypoparathyroid patients prednisone therapy did not affect circulating 25-(OH)D levels but serum l,25-(OH)2D fell from 192 ± 42 to 117 ± 23 pmol/l and serum calcium from 2.41 ± 0.21 to 2.20 ± 0.05 mmol/l. 5. These findings indicate that a steroid sensitive extrarenal production of l,25-(OH)2D may occur in all subjects with a threshold serum concentration of the precursor 25-(OH)D.


1985 ◽  
Vol 105 (3) ◽  
pp. 391-396 ◽  
Author(s):  
H. Skjødt ◽  
J. A. Gallagher ◽  
J. N. Beresford ◽  
M. Couch ◽  
J. W. Poser ◽  
...  

ABSTRACT The effects of six natural vitamin D metabolites of potential biological and therapeutic interest, 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3), 25-hydroxyvitamin D3 (25-OH-D3), 24R,25-dihydroxyvitamin D3 (24R,25-(OH)2D3), 1,24R,25-trihydroxyvitamin D3 (1,24R,25-(OH)3D3), 25S,26-dihydroxyvitamin D3 (25S,26-(OH)2D3) and 1,25S,26-trihydroxyvitamin D3 (1,25S,26-(OH)3D3) on cell replication and expression of the osteoblastic phenotype in terms of osteocalcin production were examined in cultured human bone cells. At a dose of 5 × 10−12 mol/l, 1,25-(OH)2D3 stimulated cell proliferation, whereas at higher doses (5 × 10−9−5 × 10 −6 mol/l) cell growth was inhibited in a dose-dependent manner. The same pattern of effects was seen for the other metabolites in a rank order of potency: 1,25-(OH)2D3> 1,25S,26-(OH)3D3 = 1,24R,25-(OH)3D3>25S,26-(OH)2D3 = 24R,25-(OH)2D3 = 25-OH-D3. Synthesis of osteocalcin was induced by 1,25-(OH)2D3 in doses similar to those required to inhibit cell proliferation. Biphasic responses were observed for some of the metabolites in terms of osteocalcin synthesis, inhibitory effects becoming apparent at 5 × 10−6 mol/l. The cells did not secrete osteocalcin spontaneously. These results indicate that vitamin D metabolites may regulate growth and expression of differentiated functions of normal human osteoblasts. J. Endocr. (1985) 105, 391–396


2016 ◽  
Vol 116 (8) ◽  
pp. 1402-1408 ◽  
Author(s):  
Joshua J. Todd ◽  
Emeir M. McSorley ◽  
L. Kirsty Pourshahidi ◽  
Sharon M. Madigan ◽  
Eamon Laird ◽  
...  

AbstractVitamin D is typically supplied in capsule form, both in trials and in clinical practice. However, little is known regarding the efficacy of vitamin D administered via oral sprays – a method that primarily bypasses the gastrointestinal absorption route. This study aimed to compare the efficacy of vitamin D3liquid capsules and oral spray solution in increasing wintertime total 25-hydroxyvitamin D (25(OH)D) concentrations. In this randomised, open-label, cross-over trial, healthy adults (n22) received 3000 IU (75 µg) vitamin D3daily for 4 weeks in either capsule or oral spray form. Following a 10-week washout phase, participants received the opposite treatment for a final 4 weeks. Anthropometrics and fasted blood samples were obtained before and after supplementation, with samples analysed for total 25(OH)D, creatinine, intact parathyroid hormone and adjusted Ca concentrations. At baseline, vitamin D sufficiency (total 25(OH)D>50 nmol/l), insufficiency (31–49 nmol/l) and clinical deficiency (<30 nmol/l) were evident in 59, 23 and 18 % of the participants, respectively. Overall, baseline total mean 25(OH)D concentration averaged 59·76 (sd29·88) nmol/l, representing clinical sufficiency. ANCOVA revealed no significant difference in the mean and standard deviation change from baseline in total 25(OH)D concentrations between oral spray and capsule supplementation methods (26·15 (sd17·85)v. 30·38 (sd17·91) nmol/l, respectively;F=1·044, adjustedr20·493,P=0·313). Oral spray vitamin D3is an equally effective alternative to capsule supplementation in healthy adults.


2019 ◽  
Vol 106 (1) ◽  
pp. 3-13 ◽  
Author(s):  
William D. Fraser ◽  
Jonathan C. Y. Tang ◽  
John J. Dutton ◽  
Inez Schoenmakers

AbstractThe demand for measurement of vitamin D metabolites for clinical diagnosis and to advance our understanding of the role of vitamin D in human health has significantly increased in the last decade. New developments in technologies employed have enabled the separation and quantification of additional metabolites and interferences. Also, developments of immunoassays have changed the landscape. Programmes and materials for assay standardisation, harmonisation and the expansion of the vitamin D external quality assurance scheme (DEQAS) with the provision of target values as measured by a reference measurement procedure have improved standardisation, quality assurance and comparability of measurements. In this article, we describe developments in the measurement of the commonly analysed vitamin D metabolites in clinical and research practice. We describe current analytical approaches, discuss differences between assays, their origin, and how these may be influenced by physiological and experimental conditions. The value of measuring metabolites beyond 25 hydroxyvitamin D (25(OH)D), the marker of vitamin D status, in routine clinical practice is not yet confirmed. Here we provide an overview of the value and application of the measurement of 1,25 dihydroxyvitamin D, 24,25 dihydroxyvitamin D and free 25OHD in the diagnosis of patients with abnormalities in vitamin D metabolism and for research purposes.


1981 ◽  
Vol 27 (10) ◽  
pp. 1757-1760 ◽  
Author(s):  
M J Jongen ◽  
W J van der Vijgh ◽  
H J Willems ◽  
J C Netelenbos ◽  
P Lips

Abstract We describe a simultaneous assay for the principal vitamin D metabolites: 25-hydroxyvitamin D, 24-25-dihydroxyvitamin D, and 1,25-dihydroxyvitamin D. Special attention has been paid to simplification of the extensive extraction and purification procedures used in previously described simultaneous assays. All three metabolites were isolated with a single extraction step, followed by only one gradient liquid-chromatographic procedure. For final quantitation we used competitive protein binding assays, involving readily available binding proteins and commercially purchased tritiated vitamin D metabolites. Concentrations in the plasma of healthy subjects (mean age, 27 years), sampled during December were 51 (SD 17) nmol/L, 4.1 (SD 1.3) nmol/L, and 124 (SD 26) pmol/L for 25-hydroxyvitamin D, 24,25-dihydroxyvitamin D and 1,25-dihydroxyvitamin D, respectively. Intra- and interassay CVs for the three metabolites were 4.4 and 3.9%, 6.7 and 8.0%, and 7.0 and 4.8%, respectively.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Youssra Dakroury ◽  
Alexandra E. Butler ◽  
Soha R. Dargham ◽  
Aishah Latif ◽  
Amal Robay ◽  
...  

Objective. Genetic studies have identified four Qatari genotypes: Q1 Arab, Bedouin; Q2 Asian/Persian; Q3 African; and a fourth admixed group not fitting into the previous 3 groups. This study was undertaken to determine if there was an increased risk of deficiency of vitamin D and its metabolites associated with differing genotypes, perhaps due to genetic differences in skin pigmentation. Methods. 398 Qatari subjects (220 type 2 diabetes and 178 controls) had their genotype determined by Affymetrix 500 k SNP arrays. Total values of 1,25-dihydroxyvitamin D (1,25(OH)2D), 25-hydroxyvitamin D (25(OH)D), 24,25-dihydroxyvitamin D (24,25(OH)2D), and 25-hydroxy-3epi-vitamin D (3epi-25(OH)D) concentrations were measured by the LC-MS/MS analysis. Results. The distribution was as follows: 164 (41.2%) genotyped Q1, 149 (37.4%) genotyped Q2, 31 (7.8%) genotyped Q3, and 54 (13.6%) genotyped “admixed.” Median levels of 25(OH)D and 3epi-25(OH)D did not differ across Q1, Q2, Q3, and “admixed” genotypes, respectively. 1,25(OH)2D levels were lower (p<0.04) between Q2 and the admixed groups, and 24,25(OH)2D levels were lower (p<0.05) between Q1 and the admixed groups. Vitamin D metabolite levels were lower in females for 25(OH)D, 1,25(OH)2D (p<0.001), and 24,25(OH)2D (p<0.006), but 3epi-25(OH)D did not differ (p<0.26). Diabetes prevalence was not different between genotypes. Total 1,25(OH)2D (p<0.001), total 24,25(OH)2D (p<0.001), and total 3epi-25(OH)D (p<0.005) were all significantly lower in diabetes patients compared to controls whilst the total 25(OH)D was higher in diabetes than controls (p<0.001). Conclusion. Whilst 25(OH)D levels did not differ between genotype groups, 1,25(OH)2D and 24,25(OH)2D were lower in the admixed group, suggesting that there are genetic differences in vitamin D metabolism that may be of importance in a population that may allow a more targeted approach to vitamin D replacement. This may be of specific importance in vitamin D replacement strategies with the Q2 genotype requiring less, and the other genotypes requiring more to increase 1,25(OH)2D. Whilst overall the group was vitamin D deficient, total 25(OH)D was higher in diabetes, but 1,25(OH)2D, 24,25(OH)2D, and 3epi-25(OH)D were lower in diabetes that did not affect the relationship to genotype.


Nutrients ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1977 ◽  
Author(s):  
Laurianne Bonnet ◽  
Marielle Margier ◽  
Ljubica Svilar ◽  
Charlene Couturier ◽  
Emmanuelle Reboul ◽  
...  

Vitamin D metabolism is actively modulated in adipose tissue during obesity. To better investigate this process, we develop a specific LC-HRMS/MS method that can simultaneously quantify three vitamin D metabolites, i.e., cholecalciferol, 25-hydroxyvitamin D3 (25(OH)D3), and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) in a complex matrix, such as mouse adipose tissue and plasma. The method uses pretreatment with liquid–liquid or solid–phase extraction followed by derivatization using Amplifex® reagents to improve metabolite stability and ionization efficiency. Here, the method is optimized by co-eluting stable isotope-labelled internal standards to calibrate each analogue and to spike biological samples. Intra-day and inter-day relative standard deviations were 0.8–6.0% and 2.0–14.4%, respectively for the three derivatized metabolites. The limits of quantification (LoQ) achieved with Amplifex® derivatization were 0.02 ng/mL, 0.19 ng/mL, and 0.78 ng/mL for 1,25(OH)2D3, 25(OH)D3 and cholecalciferol, respectively. Now, for the first time, 1,25(OH)2D3 can be co-quantified with cholecalciferol and 25(OH)D3 in mouse adipose tissue. This validated method is successfully applied to study the impact of obesity on vitamin D status in mice.


1987 ◽  
Vol 115 (3) ◽  
pp. 345-352 ◽  
Author(s):  
Reinhard Kaune ◽  
Johein Harmeyer

Abstract. Vitamin D metabolism was studied in the 'Hannover Pig', a strain which suffers from pseudo vitamin D-deficiency rickets, type I. Animals of this strain are known to be devoid of renal 25-hydroxyvitamin D3-1α-hydroxylase and -24-hydroxylase activities. Pigs with florid rickets and hypocalcaemia were treated with single im injections of 0.25 to 1.25 mg of vitamin D3, doses that have been shown in previous studies to be effective in producing transient healing of rachitic symptoms. The levels of vitamin D3 and its most relevant physiological metabolites in plasma were estimated at intervals before and after this vitamin D3 treatment. Vitamin D3 rose from 14.8 ± 8.1 to 364 ± 190 nmol/l (mean ± sd) 2 to 3 days post injectionem, 25-hydroxyvitamin D3 from 131.0 ± 46.2 to 1068 ± 160 nmol/l within 7 days post injectionem. The 1α,25-dihydroxyvitamin D3 concentration in plasma was elevated from 73.9 ± 25.0 to 281 ± 168 pmol/l 2 to 3 days post injectionem and declined continually from that time. 24R,25-dihydroxyvitamin D3 and 25S,26-dihydroxyvitamin D3 levels after treatment showed different responses in different animals being either elevated or unchanged. Clinical healing of the pigs with these doses of vitamin D3 was attributed to the transient rise of 1α,25-dihydroxyvitamin D3 in plasma. It was assumed that 1α,25-dihydroxyvitamin D3 synthesis takes place under these circumstances in extrarenal tissues.


1980 ◽  
Vol 26 (3) ◽  
pp. 444-450 ◽  
Author(s):  
R S Mason ◽  
D Lissner ◽  
H S Grunstein ◽  
S Posen

Abstract We describe a simplified assay for 24,25-and 1.25-dihydroxyvitamin D in human serum. It involves two preparative steps, and normal chick intestine is used in preparing cytosol-binding protein. Our results for 24,25-dihydroxyvitamin D include a reference interval of 2.9—16 nmol/L (1.2—6.7 microgram/L), a mean of 6.7 nmol/L (2.8 microgram/L), an intra-assay CV of 11%, and an interassay CV of 22%. For 1,25-dihydroxyvitamin D, these data were 29—168 pmol/L (12—70 ng/L), 86 pmol/L (36 ng/L), 12%, and 22%, respectively. In hypoparathyroid patients with vitamin D intoxication, mean concentrations of 25-hydroxyvitamin D and 24,25-dihydroxyvitamin D in serum were significantly above normal; the 1,25-dihydroxyvitamin D concentrations were significantly below normal. Patients with malabsorption and/or post-gastrectomy states had significantly subnormal values for both 25-hydroxyvitamin D and 24,25-dihydroxyvitamin D in serum, and there was a significantly negative correlation between each of these biochemical values and the severity of osteomalacia. We also discuss cost effectiveness of assaying vitamin D metabolites in human serum.


Sign in / Sign up

Export Citation Format

Share Document