Estimating the rate of externalization of gonadotrophin-releasing hormone receptors in ovine anterior pituitary cells in vitro

1988 ◽  
Vol 117 (1) ◽  
pp. 97-107
Author(s):  
L. Starling ◽  
J. E. A. McIntosh ◽  
R. P. McIntosh

ABSTRACT We report an estimate of the rate of externalization of unstimulated receptors for gonadotrophin-releasing hormone (GnRH), and derive from this the turnover time of the unstimulated receptor. The binding of the GnRH antagonist acetyl-d-pCl-Phe1,2,d-Trp3,d-Lys6,d-Ala10]-GnRH to dispersed sheep anterior pituitary cells was non-saturable at 37 °C. Further experiments showed that the binding had two distinct phases. We suggest that these phases correspond to the initial, saturable binding to existing plasma membrane receptors, followed by binding to receptors as they are inserted into the surface membrane. The two processes are temporally distinct, and can be inhibited independently by pharmacological manipulations. The initial phase was inhibited by treatments that could be expected to reduce the number of active receptors on the cell surface (preincubation of the cells for 30 min with 100 μg neuraminidase/ml or 50 μmol GnRH/ml), and was complete in less than 30 min after the addition of the antagonist tracer. The second phase occurred continuously in the presence of tracer, and was reduced or abolished by inhibitors of microtubule function (100 μmol vinblastine/l), protein synthesis (25 μg cycloheximide/ml), or energy metabolism (0·25 mmol 2,4-dinitrophenol/l). The rate of insertion of receptors into the plasma membrane was calculated from the rate of increase of the second phase of binding. The calculated rate implies a 100% turnover of unstimulated receptors every 150 min. In contrast, previously published estimates of the rate of internalization of the GnRH–receptor complex in the rat pituitary suggest that the stimulated receptor is turned over much faster. J. Endocr. (1988) 117, 97–107

1982 ◽  
Vol 99 (1) ◽  
pp. 44-49 ◽  
Author(s):  
L. W. Eddie ◽  
H. W. G. Baker ◽  
R. E. Higginson ◽  
B. Hudson

Abstract. Primary monolayer cultures of adult male rat anterior pituitary cells secreted both LH and FSH in a biphasic manner when incubated with gonadotrophin releasing hormone (GnRH). The peaks of secretion of LH and FSH were coincident; the first occurred between 15 and 30 min and the second between 1 and 3 h after the addition of GnRH. Approximately 20% of the total amount of gonadotrophins secreted in the 6 h treatment with GnRH was contained in the first peak. Inhibitors of the secretion of gonadotrophins affected LH and FSH secretion differently. Inhibin suppressed the secretion of FSH to a greater extent than that of LH, whereas testosterone and cycloheximide had a greater effect on LH. Neither phase of secretion of LH or FSH was reduced preferentially by inhibin or testosterone but the greater effect of cycloheximide was on the second phase of secretion.


2003 ◽  
Vol 178 (3) ◽  
pp. 491-501 ◽  
Author(s):  
A Hassan ◽  
S Chacko ◽  
D Mason

Following repeated or prolonged exposure to either corticotrophin-releasing hormone (CRH) or arginine vasopressin (AVP), pituitary adrenocorticotrophin (ACTH) responsiveness is reduced. This study compared the characteristics of desensitization to CRH and AVP in perifused ovine anterior pituitary cells. Desensitization to AVP occurred at relatively low AVP concentrations and was both rapid and readily reversible. Treatment for 25 min with AVP at concentrations greater than 2 nM caused significant reductions in the response to a subsequent 5 min 100 nM AVP pulse (IC(50)=6.54 nM). Significant desensitization was observed following pretreatment with 5 nM AVP for as briefly as 5 min. Desensitization was greater following a 10 min pretreatment, but longer exposures caused no further increase. Resensitization was complete within 40 min following 15 min treatment with 10 nM AVP. Continuous perifusion with 0.01 nM CRH had no effect on AVP-induced desensitization. Treatment with 0.1 nM CRH for either 25 or 50 min caused no reduction in the response to a subsequent 5 min stimulation with 10 nM CRH. When the pretreatment concentration was increased to 1 nM significant desensitization was observed, with a greater reduction in response occurring after 50 min treatment. Recovery of responsiveness was progressive following 50 min treatment with 1 nM CRH and was complete after 100 min. Our data show that in the sheep AVP desensitization can occur at concentrations and durations of AVP exposure within the endogenous ranges. This suggests that desensitization may play a key role in regulating ACTH secretion in vivo. If, as has been suggested, CRH acts to set corticotroph gain while AVP is the main dynamic regulator, any change in responsiveness to CRH may significantly influence the overall control of ACTH secretion.


1995 ◽  
Vol 61 (1) ◽  
pp. 77-84 ◽  
Author(s):  
Thomas O. Bruhn ◽  
Jan M.M. Rondeel ◽  
Thomas G. Bolduc ◽  
Ivor M.D. Jackson

1983 ◽  
Vol 61 (2) ◽  
pp. 186-189 ◽  
Author(s):  
Noboru Fujihara ◽  
Masataka Shiino

The effect of thyrotrophin-releasing hormone (TRH, 10−7 M) on luteinizing hormone (LH) release from rat anterior pituitary cells was examined using organ and primary cell culture. The addition of TRH to the culture medium resulted in a slightly enhanced release of LH from the cultured pituitary tissues. However, the amount of LH release stimulated by TRH was not greater than that produced by luteinizing hormone – releasing hormone (LH–RH, 10−7 M). Actinomycin D (2 × 10−5 M) and cycloheximide (10−4 M) had an inhibitory effect on the action of TRH on LH release. The inability of TRH to elicit gonadotrophin release from the anterior pituitary glands in vivo may partly be due to physiological inhibition of its action by other hypothalamic factor(s).


1992 ◽  
Vol 134 (2) ◽  
pp. 177-NP ◽  
Author(s):  
F. Kotsuji ◽  
K. Hosokawa ◽  
T. Tominaga

ABSTRACT To investigate the influence of weight reduction on pituitary function and its modulation by gonadotrophin-releasing hormone (GnRH), female rats were restricted to 10 g food/day for 60 days. GnRH (5 μg) or saline (0·2 ml) were administered daily between days 31 and 60 of the period of underfeeding. Underfeeding brought about a decrease in the pituitary gonadotrophin content, serum levels of gonadotrophins and oestradiol, and the number and size of both LH- and FSH-positive pituitary cells. The administration of GnRH to underfed rats produced an increase in the pituitary and serum gonadotrophin levels and the number and size of both LH- and FSH-positive pituitary cells. These observations suggest that underfeeding and/or weight loss diminish the number and activity of the pituitary gonadotrophs, and that daily administration of GnRH both increases the number of gonadotrophs and augments their activity. Journal of Endocrinology (1992) 134, 177–182


1994 ◽  
Vol 140 (2) ◽  
pp. 189-195 ◽  
Author(s):  
J Schwartz ◽  
P Ash ◽  
V Ford ◽  
H Raff ◽  
S Crosby ◽  
...  

Abstract Although corticotrophin-releasing hormone (CRH) and arginine vasopressin (AVP) have been extensively characterized as stimulators, and glucocorticoids as inhibitors of ACTH secretion, far less is known about the control of the secretion of ACTH precursors from the anterior pituitary or about the types of corticotrophs involved. The present study was designed to systematically evaluate the actions of stimulatory and inhibitory factors on the secretion of ACTH and ACTH precursors (pro-opiomelanocortin, Mr 31 000; pro-ACTH, Mr 22 000) from dissociated ovine anterior pituitary cells. The cells were stimulated for 3 h with CRH (10 nmol/l) and AVP (100 nmol/l), alone or in combination with the synthetic glucocorticoid dexamethasone. In designated wells, cells were treated with dexamethasone, (100 nmol/l), beginning 16–18 h before and continuing through the 3-h secretion experiments in the presence of CRH and AVP. Secretion of ACTH-like peptides from intact cultures was compared with that from cultures which had been pretreated with a cytotoxic CRH conjugate (cytotoxin) to eliminate CRH-target cells specifically. Immunoreactive (ir)-ACTH was measured by radioimmunoassay (RIA); ACTH(1–39) and ACTH precursors were specifically measured by two-site immunoradiometric assays that discriminate between the two. In intact populations of cells, dexamethasone had no effect on basal ACTH(1–39) secretion, but decreased the secretion of ACTH(1–39) in response to CRH or AVP. Pretreatment of cells in the same experiments with cytotoxin (for 18 h, beginning 3·5 days before secretion studies) also had no significant effect on basal ACTH(1–39) secretion, but eliminated the response to CRH and decreased the response to AVP. In contrast to the situation in intact populations, dexamethasone had no effect on the residual secretion of ACTH(1–39) in response to AVP. These results mirrored those for secretion of ir-ACTH, measured by RIA. Secretion of ACTH precursors followed a different pattern from that for ir-ACTH and ACTH(1–39). In intact populations, dexamethasone decreased the secretion of ACTH precursors in response to CRH, but had no effect on basal secretion or the precursor response to AVP. Elimination of CRH-target cells also had no effect on basal precursor secretion and eliminated the secretion of precursors in response to CRH. Loss of CRH-target cells was accompanied by a smaller decrease in the secretion of ACTH precursors than ir-ACTH and ACTH(1–39) in response to AVP. Interestingly, dexamethasone significantly increased the secretion of ACTH precursors in response to AVP after cytotoxin. These results suggest either that the inhibition by glucocorticoids of the ACTH(1–39) secretory response to AVP is confined to those AVP-responsive cells that are sensitive to the CRH-target-specific cytotoxin, or that glucocorticoid-induced inhibition of the response to AVP depends on the functional presence of CRH-responsive cells. The results further suggest that the secretion of ACTH precursors in response to AVP is resistant to inhibition by glucocorticoids, regardless of the presence of CRH-target cells and is, generally, much less influenced by, or dependent upon, CRH-target cells. Taken together, the data suggest that those corticotrophs which are resistant to cytotoxin are the source of ACTH precursors secreted in response to AVP, and resist inhibition by glucocorticoids. Journal of Endocrinology (1994) 140, 189–195


Sign in / Sign up

Export Citation Format

Share Document