Substance P stimulation of polyphosphoinositide hydrolysis in rat anterior pituitary membranes involves a GTP-dependent mechanism

1991 ◽  
Vol 130 (1) ◽  
pp. 63-70 ◽  
Author(s):  
S. E. Mau ◽  
T. Saermark

ABSTRACT Substance P (SP) stimulates polyphosphoinositide breakdown in the rat anterior pituitary through an NK-1 receptor. In the present study we present evidence that the coupling between the SP–NK1 receptor complex and polyphosphoinositide-specific phospholipase C (PI-PLC) in rat anterior pituitary membranes may involve a mechanism consistent with a GTP-binding protein. The formation of inositol phosphates from [3H]myo-inositol-labelled anterior pituitary membranes induced by SP was potentiated by GTP and non-hydrolysable guanine nucleotides. The stimulatory effects of SP alone and SP plus GTP could be blocked by addition of GDP-β-S (guanosine 5-O-(thiodiphosphate)) in excess. Basal and SP plus guanine nucleotide-induced inositol phosphate formation were stimulated by fluoride, whereas the effect of SP alone was inhibited. Pretreatment of anterior pituitary membranes with sodium deoxycholate attenuated the inositol phosphate response elicited by GTP and GTP-γ-S, whereas basal and SP-stimulated inositol phosphate production showed a peak at 1 mg sodium deoxycholate/ml. SP, fluoride and guanine nucleotide stimulatory effects on hydrolysis of polyphosphoinositide (PPI) were unaffected by pretreatment of anterior pituitary cells with cholera or pertussis toxin for 12 h. Treatment of anterior pituitary membranes with cholera and pertussis toxin yielded [32P]ADP-ribosylation of two proteins with molecular masses of 45 and 41 kDa respectively. We conclude that SP coupling to PI-PLC through the NK1 receptor in the rat anterior pituitary involves a GTP-binding mechanism distinct from the G-proteins associated with adenylate cyclase, Gs and Gi. Journal of Endocrinology (1991) 130, 63–70

1986 ◽  
Vol 110 (3) ◽  
pp. 389-393 ◽  
Author(s):  
P. L. Canonico ◽  
W. D. Jarvis ◽  
A. M. Judd ◽  
R. M. MacLeod

ABSTRACT The hydrolysis of membrane phosphatidylinositol to yield [3H]labelled inositol phosphates by anterior pituitary cells was stimulated significantly by angiotensin II, TRH and neurotensin over a broad range of concentrations. These secretagogues also stimulated release of prolactin. Although the coincident incubation of dopamine with these agents resulted in a marked diminution of prolactin release, no concomitant reduction in inositol phosphate production was observed. In addition, bromocriptine, a potent agonist of dopamine, also proved ineffective in blunting stimulated phosphatidylinositol catabolism. Although it slightly inhibited basal rates of inositol tris-, bis- and monophosphate production, these results show that the secretagogue-mediated enhancement of phosphatidylinositol catabolism may be correlated with an increased release of prolactin and that the inhibition of hormone release produced by dopamine is not achieved by reducing basal or secretagogue-mediated inositol phosphate production. J. Endocr. (1986) 110, 389–393


1991 ◽  
Vol 6 (1) ◽  
pp. 95-99 ◽  
Author(s):  
M. A. Sortino ◽  
T. M. Delahunty ◽  
T. Yasumoto ◽  
M. J. Cronin

ABSTRACT Maitotoxin is a potent marine poison that mobilizes calcium in most vertebrate cell types and accelerates secretion from anterior pituitary cells. It is not known whether voltage-sensitive calcium channels or other mechanisms initiate the effects of maitotoxin on anterior pituitary cells. Changes in intracellular Ca2+ levels may also be achieved by releasing internal calcium stores via inositol trisphosphate (InsP3). Indeed, maitotoxin rapidly increased inositol phosphate accumulation in a concentration-dependent manner. Calcium channel antagonists such as nifedipine and verapamil did not block this response nor did calcium-mobilizing agents (BAYk8644, A23187) mimic this effect. These data suggest that the mechanism by which maitotoxin acts at the pituitary may include the activation of an enzyme that produces the calcium-mobilizing signal InsP3.


1993 ◽  
Vol 10 (2) ◽  
pp. 107-114 ◽  
Author(s):  
S E Chadio ◽  
F A Antoni

ABSTRACT We have previously characterized specific oxytocin receptors in the rat anterior pituitary gland, using a highly selective oxytocin receptor antagonist as radio-ligand. The aim of the present study was to examine whether occupation of these receptors by oxytocin produces a stimulation of prolactin release and a rise in the accumulation of total inositol phosphates in the rat adenohypophysis. Anterior pituitary cells harvested from randomly cycling and diethylstilboestrol (100 μg s.c.)-treated rats were perifused with Dulbecco's minimal essential medium at a rate of 0·3 ml/min. Oxytocin and the specific oxytocin agonist [Thr4-Gly7]-oxytocin (TG-OT) both stimulated a significant prolactin release at concentrations of 10-6 and 10-7 m. Oestrogen treatment did not affect the response to oxytocin, indicating that there is no straightforward correlation between receptor number and prolactin secretory response in the rat pituitary gland. The involvement of phosphoinositide hydrolysis was investigated in dispersed anterior pituitary cells and uterine tissue from randomly cycling rats. Oxytocin and arginine-vasopressin stimulated a significant (P<0·05) and dose-related increase in total inositol phosphates, vasopressin being more potent. The specific oxytocin agonist TG-OT had no effect on total inositol phosphate production in pituitary cells, but when tested in uterine tissue it significantly (P< 0.05) stimulated the accumulation of total inositol phosphate at all concentrations tested (10-5 to 10-9 m). In conclusion, the data show that oxytocin has prolactin-releasing activity, acting on specific receptors in the anterior pituitary gland. Furthermore, although oxytocin receptors in the rat uterus are coupled to the inositol phospholipid cycle, it would appear that this is not a prerequisite for the stimulation of prolactin secretion when specific oxytocin receptors in the rat adenohypophysis are activated.


1986 ◽  
Vol 237 (1) ◽  
pp. 181-186 ◽  
Author(s):  
P M Hinkle ◽  
E L Hewlett ◽  
M C Gershengorn

The effects of pertussis toxin on the responses of rat pituitary-tumour (GH) cells to thyrotropin-releasing hormone (thyroliberin, TRH) were examined. Treatment of cells with pertussis toxin did not alter the affinity or concentration of TRH receptors, or the sensitivity of the TRH receptor to inhibition by guanine nucleotides. TRH caused an increase in low-Km GTPase activity in membrane-containing fractions from both control and pertussis-toxin-treated cells. TRH stimulation of inositol phosphate formation was insensitive to pertussis toxin. TRH caused a biphasic increase in the concentrations of cytosolic free Ca2+ as monitored by intracellularly trapped Quin 2, and this increase was the same in control and toxin-treated cultures. The toxin did not alter the increase in prolactin and growth-hormone (somatotropin) release stimulated by TRH or shift the TRH dose-response curve, and it did not affect the TRH-induced rise in prolactin synthesis measured over 24 h. However, pertussis toxin did block the ability of somatostatin and muscarinic agonists to inhibit prolactin and growth-hormone secretion stimulated by vasoactive intestinal peptide when analysed under the same conditions as those in which the TRH system was unaffected. These data indicate that the guanine nucleotide effects on TRH binding and activity are not mediated by Ni, but possibly by another member of the family of guanine-nucleotide-dependent regulatory proteins.


1988 ◽  
Vol 249 (3) ◽  
pp. 917-920 ◽  
Author(s):  
C W Taylor ◽  
D M Blakeley ◽  
A N Corps ◽  
M J Berridge ◽  
K D Brown

We have compared the effects of pretreatment of Swiss 3T3 cell with pertussis toxin on the stimulation of DNA synthesis and phosphoinositide hydrolysis in response to a wide variety of mitogens. The toxin substantially inhibited the stimulation of DNA synthesis in response to a phorbol ester or various peptide and polypeptide growth factors irrespective of their ability to activate phosphoinositidase C. Production of inositol phosphates in response to platelet-derived growth factor, fibroblast growth factor and prostaglandin F2 alpha were unaffected by the toxin while bombesin- and vasopressin-stimulated formation of inositol phosphates were inhibited by only 27 and 23% respectively. These results argue against a major role for a pertussis toxin-sensitive G protein in coupling any of these mitogen receptors to activation of a phosphoinositidase C. Furthermore, the results suggest that the widespread inhibitory effects of pertussis toxin on mitogen-stimulated DNA synthesis may be unrelated to the toxin's limited actions on phosphoinositide hydrolysis.


1994 ◽  
Vol 142 (1) ◽  
pp. 9-18 ◽  
Author(s):  
S E Mau ◽  
M R Witt ◽  
H Vilhardt

Abstract Studies have shown that mastoparan and other amphiphilic peptides induce exocytosis of hormones from anterior pituitary cells. We have studied the effect of mastoparan on the secretion of prolactin from cultured rat anterior pituitary cells and on the concomitant functional status of signal-transducing pathways in lactotroph-enriched cell cultures. Mastoparan stimulation of prolactin secretion was dose-dependent, time-dependent, reversible and required the presence of calcium. Pretreatment of pituitary cell cultures with cholera and pertussis toxin had no effect on the secretory response, whereas encapsulation of guanosine 5-[β-thio]diphosphate (GDP-β-S) by reversible electropermeabilization inhibited mastoparan-stimulated secretion. Incubation of mastoparan with myo[3H]inositol-labelled lactotroph-enriched anterior pituitary cell cultures resulted in increased formation of inositol phosphates compared with control cells, and encapsulation of GDP-β-S blocked mastoparan-induced inositol lipid hydrolysis. Mastoparan caused translocation of protein kinase C activity from a soluble to a membrane-attached form. Mastoparan was able to increase the intracellular Ca2+ concentration in Fura-2-loaded individual lactotrophs. Omission of Ca2+ from the extracellular medium did not change the Ca2+ response in lactotrophs when stimulated with mastoparan. On the basis of these results it is concluded that mastoparan-induced release of prolactin is preceded by activation of the inositol(1,4,5)trisphosphate/diacylglycerol pathway with resulting translocation of protein kinase activity and increment in intracellular Ca2+. However, other signal-transducing pathways may be involved in the secretory process. Journal of Endocrinology (1994) 142, 9–18


1989 ◽  
Vol 2 (1) ◽  
pp. 47-53 ◽  
Author(s):  
T.H. Jones ◽  
B. L. Brown ◽  
P. R. M. Dobson

ABSTRACT Bradykinin stimulated prolactin secretion from monolayer cultures of rat anterior pituitary cells, the stimulation being greater from the cells of male rats. This stimulated secretion was accompanied by a rise in total inositol phosphate accumulation, suggesting that the action of bradykinin is mediated by phosphoinositide hydrolysis. The increase in inositol phosphate accumulation was biphasic; a further sharp rise occurred when the concentration of bradykinin exceeded 1 μmol/l. This may indicate that bradykinin acts on other cell types in the pituitary gland. Bradykinin had no effect on growth hormone secretion from cells of normal pituitary glands, or on prolactin secretion and phosphoinositide metabolism in GH3 rat pituitary tumour cells. Bradykinin receptor antagonists (both B1 and B2) had no effect on either bradykinin-stimulated inositol phosphate accumulation or prolactin secretion. Kallikreins, the enzymes responsible for the generation of kinins, are known to be present in the adenohypophysis. Therefore, the results presented here would suggest that kinins may have a role as paracrine agents in the pituitary gland.


Sign in / Sign up

Export Citation Format

Share Document