The N-methyl-d-aspartate receptor antagonist MK-801 delays the onset of puberty and may acutely block the first spontaneous LH surge and ovulation in the rat

1991 ◽  
Vol 131 (3) ◽  
pp. 435-441 ◽  
Author(s):  
H. M. A. Meijs-Roelofs ◽  
P. Kramer ◽  
E. C. M. van Leeuwen

ABSTRACT The physiological role of activated hypothalamic N-methyl-d-aspartate (NMDA) receptors during the final phase of female sexual maturation was explored in the rat. The effects of administration of the specific non-competitive receptor antagonist MK-801 on the occurrence of first ovulation and on LH secretion were studied. Injections of MK-801 (0·1–0·2 mg/kg body wt, s.c.) were given once or twice daily, starting at 28 or 35 days of age and continuing up to the day of first ovulation, resulted in a significant delay of this ovulation. Rats that were treated daily with 0·2 mg MK-801/kg, starting on days 30 or 34 and continuing up to day 38, but not including the day of first pro-oestrus, also showed retarded first ovulation. No decrease in serum LH concentration, compared with control rats, could be detected in these rats. Acute treatment with MK-801 (one or two injections of 0·2, or one injection of 0·5 mg/kg) given at 11.30 h (and 16.00 h) on the day of first pro-oestrus produced partial (1 × 0·2 mg/kg) or complete (2×0·2 and 1 × 0·5 mg/kg) blockade of first ovulation; blocked rats ovulated 1 day later. Serum LH concentrations at 16.00 h on the day of pro-oestrus were significantly decreased in all MK-801-treated groups compared with saline-injected control rats. At 19.00 and 22.00 h LH concentrations remained low in all non-ovulating MK-801-treated rats, but increased in the MK-801-treated rats that ovulated. Thus chronic blockade of the NMDA receptors by the antagonist MK-801 delays but does not prevent first ovulation, whereas acute treatment blocks the pro-oestrous LH peak. It was concluded that activation of NMDA receptors plays an important role both in tonic and preovulatory LH secretion during the onset of puberty in the female rat. Journal of Endocrinology (1991) 131, 435–441

Author(s):  
Hong Wei ◽  
Zuyue Chen ◽  
Ari Koivisto ◽  
Antti Pertovaara

Abstract Background Earlier studies show that endogenous sphingolipids can induce pain hypersensitivity, activation of spinal astrocytes, release of proinflammatory cytokines and activation of TRPM3 channel. Here we studied whether the development of pain hypersensitivity induced by sphingolipids in the spinal cord can be prevented by pharmacological inhibition of potential downstream mechanisms that we hypothesized to include TRPM3, σ1 and NMDA receptors, gap junctions and D-amino acid oxidase. Methods Experiments were performed in adult male rats with a chronic intrathecal catheter for spinal drug administrations. Mechanical nociception was assessed with monofilaments and heat nociception with radiant heat. N,N-dimethylsphingosine (DMS) was administered to induce pain hypersensitivity. Ononetin, isosakuranetin, naringenin (TRPM3 antagonists), BD-1047 (σ1 receptor antagonist), carbenoxolone (a gap junction decoupler), MK-801 (NMDA receptor antagonist) and AS-057278 (inhibitor of D-amino acid oxidase, DAAO) were used to prevent the DMS-induced hypersensitivity, and pregnenolone sulphate (TRPM3 agonist) to recapitulate hypersensitivity. Results DMS alone produced within 15 min a dose-related mechanical hypersensitivity that lasted at least 24 h, without effect on heat nociception. Preemptive treatments with ononetin, isosakuranetin, naringenin, BD-1047, carbenoxolone, MK-801 or AS-057278 attenuated the development of the DMS-induced hypersensitivity, but had no effects when administered alone. Pregnenolone sulphate (TRPM3 agonist) alone induced a dose-related mechanical hypersensitivity that was prevented by ononetin, isosakuranetin and naringenin. Conclusions Among spinal pronociceptive mechanisms activated by DMS are TRPM3, gap junction coupling, the σ1 and NMDA receptors, and DAAO.


1994 ◽  
Vol 76 (3) ◽  
pp. 1138-1143 ◽  
Author(s):  
L. Ling ◽  
D. R. Karius ◽  
D. F. Speck

Systemic injection of MK-801, an N-methyl-D-aspartate (NMDA) receptor-associated channel blocker, induces an apneusis in vagotomized cats similar to that produced by pontine respiratory group (PRG) lesions, suggesting the possible involvement of NMDA receptors in the pontine pneumotaxic mechanism. Previous results from our laboratory indicate that the efferent limb of the pontine pneumotaxic mechanism is unlikely to require NMDA receptor-mediated neurotransmission. Therefore, the present study examined the potential involvement of PRG NMDA receptors in the pontine pneumotaxic mechanism. Experiments were conducted in decerebrate, paralyzed, and ventilated adult cats. The effects on inspiratory time (TI) of MK-801 microinjection into PRG were tested in 12 cats. Pressure microinjection of MK-801 (15 mM, 80–3,000 nl) significantly prolonged TI in all animals when lung inflation was withheld. TI progressively increased in most animals for > or = 30 min. After this period, partial recovery of the effect occurred in eight cats as TI shortened toward predrug levels. In three animals, microinjection of MK-801 induced a complete apneusis in the absence of lung inflation from which there was no detectable recovery. Microinjections into regions approximately 2 mm distant from PRG produced little or no effect. These results provide evidence that NMDA receptors located in the region of PRG play an important functional role in the control of the breathing cycle.


1992 ◽  
Vol 26 (4) ◽  
pp. 205-209 ◽  
Author(s):  
Yuji Wada ◽  
Hidehiro Hasegawa ◽  
Mitsuhiko Nakamura ◽  
Nariyoshi Yamaguchi

1997 ◽  
Vol 272 (3) ◽  
pp. R800-R812 ◽  
Author(s):  
T. Miyawaki ◽  
S. Suzuki ◽  
J. Minson ◽  
L. Arnolda ◽  
J. Chalmers ◽  
...  

We examined the role of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptors within the caudal ventrolateral medulla (CVLM) in mediating the sympathetic baroreceptor reflex in anesthetized and paralyzed rats. Bilateral microinjection into CVLM of either DL-2-amino-5-phosphonovaleric acid [APV; a selective N-methyl-D-aspartic acid (NMDA) receptor antagonist, 20 mM, 100 nl] or 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; a selective AMPA/kainate receptor antagonist, 2 mM, 100 nl) alone failed to eliminate the aortic nerve stimulation-evoked hypotension and inhibition of splanchnic sympathetic nerve activity (SNA) or the cardiac-related rhythmicity of SNA. All components of the sympathetic-baroreceptor reflex were abolished when kynurenate (100 mM, 30 nl) or mixtures of APV and CNQX (10 and 1 mM, respectively, 100 or 30 nl) were injected into CVLM. Injection of APV or CNQX into CVLM reduced aortic nerve-evoked inhibitory responses of bulbospinal sympathoexcitatory neurons in rostral ventrolateral medulla (RVLM). The extent of this reduction was variable. Usually, significant inhibition was preserved. In seven RVLM neurons, intravenous injection of MK-801 (NMDA receptor antagonist, 2 mg/kg) failed to eliminate aortic nerve-evoked inhibitory responses. However, inhibitory responses were abolished when CNQX was injected into CVLM after intravenous MK-801. We conclude that both NMDA and AMPA/kainate receptors in CVLM transmit baroreceptor information.


1999 ◽  
Vol 260 (2) ◽  
pp. 89-92 ◽  
Author(s):  
Takahiro Ushida ◽  
Toshikazu Tani ◽  
Motohiro Kawasaki ◽  
Osamu Iwatsu ◽  
Hiroshi Yamamoto

1980 ◽  
Vol 95 (3) ◽  
pp. 314-318 ◽  
Author(s):  
Martha Medina ◽  
Alfredo Ulloa-Aguirre ◽  
Maria A. Fernández ◽  
Gregorio Pérez-palacios

Abstract. The role of oestrogens on gonadotrophin secretion was assessed in three related patients with the complete form of testicular feminization syndrome. Serum LH and FSH levels were measured before and after I.RH stimulation as well as before, during and after chronic clomiphene citrate administration. Moderately elevated LH basal levels with a significant LH rise following I.RH were observed. Normal or even low FSH level with poor response to LRH were found in all subjects. Administration of clomiphene citrate resulted in a significant serum LH increase without any change of FSH. Following castration both LH and FSH rose and a normal response to LRH was observed. These results were interpreted as demonstrating that, while endogenous oestrogens modulate LH secretion in patients with androgen unresponsiveness, it plays no role in regulating FSH secretion and suggested that a factor of testicular origin without androgenic or oestrogenic activity is responsible for FSH regulation.


2004 ◽  
Vol 286 (3) ◽  
pp. R451-R464 ◽  
Author(s):  
Hakan S. Orer ◽  
Gerard L. Gebber ◽  
Shaun W. Phillips ◽  
Susan M. Barman

We tested the hypothesis that blockade of N-methyl-d-aspartate (NMDA) and non-NMDA receptors on medullary lateral tegmental field (LTF) neurons would reduce the sympathoexcitatory responses elicited by electrical stimulation of vagal, trigeminal, and sciatic afferents, posterior hypothalamus, and midbrain periaqueductal gray as well as by activation of arterial chemoreceptors with intravenous NaCN. Bilateral microinjection of a non-NMDA receptor antagonist into LTF of urethane-anesthetized cats significantly decreased vagal afferent-evoked excitatory responses in inferior cardiac and vertebral nerves to 29 ± 8 and 24 ± 6% of control ( n = 7), respectively. Likewise, blockade of non-NMDA receptors significantly reduced chemoreceptor reflex-induced increases in inferior cardiac (from 210 ± 22 to 129 ± 13% of control; n = 4) and vertebral nerves (from 253 ± 41 to 154 ± 20% of control; n = 7) and mean arterial pressure (from 39 ± 7 to 21 ± 5 mmHg; n = 8). Microinjection of muscimol, but not an NMDA receptor antagonist, caused similar attenuation of these excitatory responses. Sympathoexcitatory responses to the other stimuli were not attenuated by microinjection of a non-NMDA receptor antagonist or muscimol into LTF. In fact, excitatory responses elicited by stimulation of trigeminal, and in some cases sciatic, afferents were enhanced. These data reveal two new roles for the LTF in control of sympathetic nerve activity in cats. One, LTF neurons are involved in mediating sympathoexcitation elicited by activation of vagal afferents and arterial chemoreceptors, primarily via activation of non-NMDA receptors. Two, non-NMDA receptor-mediated activation of other LTF neurons tonically suppresses transmission in trigeminal-sympathetic and sciatic-sympathetic reflex pathways.


Sign in / Sign up

Export Citation Format

Share Document