Russell's viper venom stimulates insulin secretion from rat islets of Langerhans

1993 ◽  
Vol 136 (1) ◽  
pp. 27-33 ◽  
Author(s):  
P. M. Jones ◽  
F. M. Mann

ABSTRACT Burmese Russell's viper venom (RVV) caused a dose-and temperature-dependent stimulation of insulin secretion from islets of Langerhans isolated from rat pancreas by collagenase digestion. RVV stimulated both basal and glucose-induced insulin secretion at concentrations which did not compromise islet cell viability as assessed by exclusion of trypan blue dye. The effects of RVV on insulin secretion could not be attributed to the activation of protein kinase C (PKC), since down-regulation of PKC by prolonged exposure to a tumour-promoting phorbol ester did not abolish subsequent secretory responses to RVV. However, RVV-induced insulin secretion was inhibited in the absence of extracellular Ca2 +, and RVV did not stimulate insulin secretion from Ca2+-clamped electrically permeabilized islets at either substimulatory (50 nmol/l) or stimulatory (10 μmol/l) concentrations of Ca2 +, suggesting that changes in cytosolic Ca2+ are important in the stimulation of insulin secretion by RVV. The phospholipase A2 (PLA2) inhibitor quinacrine caused a dose-dependent inhibition of RVV-induced insulin secretion, suggesting that the activation of PLA2, perhaps in response to Ca2+ influx, may be partially responsible for RVV-induced insulin secretion. Journal of Endocrinology (1993) 136, 27–33

1984 ◽  
Vol 4 (8) ◽  
pp. 665-671 ◽  
Author(s):  
Noel G. Morgan ◽  
William Montague

Melittin, an amphipathic polypeptide, stimulated the secretion of insulin from rat islets of Langerhans incubated in vitro. The secretory response was dose-dependent and saturable with half the maximal response elicited by a melittin concentration of 4 μg/ml. The response was rapid in onset, an increase in secretion occurring within 2 rain of exposure of the islets to melittin (2 μg/ml). An enhanced secretory rate could be maintained for at least 40 rain in the presence of melittin but declined steadily when the agent was removed. Stimulation of secretion by melittin occurred in the absence of glucose and in the presence of both 4 mM and 8 mM glucose but not in the presence of 20 mM glucose. The effect of melittin on secretion was dependent on the presence of extracellular calcium but was not inhibited by norepinephrine. The data suggest that melittin may be a valuable agent for further study of the role played by the B-cell plasma membrane in the regulation of insulin secretion.


1985 ◽  
Vol 231 (3) ◽  
pp. 629-634 ◽  
Author(s):  
N G Morgan ◽  
C D Short ◽  
G M Rumford ◽  
W Montague

The rate of insulin secretion from isolated rat islets of Langerhans was affected by a number of dihydropyridine derivatives known to interact with voltage-sensitive Ca2+ channels in excitable cells. The channel antagonists nifedipine and nitrendipine were potent inhibitors of glucose-induced insulin secretion in response to both 8 mM- and 20 mM-glucose, although they did not lower the basal secretion rate observed in the presence of 4 mM-glucose. The Ca2+-channel agonist, CGP 28392, also failed to alter the basal rate of insulin secretion. In the presence of 8 mM-glucose, however, 1 microM-CGP 28392 enhanced the insulin-secretion rate to a value approximately double that with 8 mM-glucose alone. This effect was dose-dependent, with half the maximal response elicited by 0.1 microM-CGP 28392, and full enhancement at 10 microM. The response was rapid in onset, with an increase in insulin secretion evident within 2 min of CGP 28392 infusion in perifused islets. Stimulation of insulin secretion by CGP 28392 was correlated with a rapid enhancement of glucose-stimulated 45Ca2+ uptake into islets cells, and with a transiently increased rate of 45Ca2+ efflux from pre-loaded islets. Stimulation of insulin secretion by CGP 28392 was abolished in the presence of noradrenaline, although under these conditions the rapid stimulation of 45Ca2+ influx induced by CGP 28392 was only partially inhibited. In contrast with these results, when islets were incubated in the presence of 20 mM-glucose, CGP 28392 caused a dose-dependent inhibition of insulin secretion. Half-maximal inhibition required approx. 0.2 microM-CGP 28392, with maximal effects observed at 10 microM. Under these conditions, however, the extent of insulin secretion was still only decreased by about 50%, to a value which was similar to that seen in the presence of 8 mM-glucose and CGP 28392. These results suggest that dihydropyridine derivatives can alter the activity of voltage-dependent Ca2+ channels in islet cells, and are consistent with the possibility that gating of these channels plays an important role in regulating the rate of insulin secretion after glucose stimulation.


1983 ◽  
Vol 96 (5) ◽  
pp. 1443-1450 ◽  
Author(s):  
H A Thompson ◽  
B S Spooner

The proteoglycans and glycosaminoglycans synthesized by embryonic mouse salivary glands during normal morphogenesis and in the presence of beta-xyloside, an inhibitor of branching morphogenesis, have been partially characterized. Control and rho-nitrophenyl-beta-D-xyloside-treated salivary rudiments synthesize proteoglycans that are qualitatively similar, based on mobility on Sepharose CL-4B under dissociative conditions and glycosaminoglycan composition. However, beta-xyloside inhibits total proteoglycan-associated glycosaminoglycan synthesis by 50%, and also stimulates synthesis of large amounts of free chondroitin (dermatan) sulfate. This free glycosaminoglycan accounts for the threefold stimulation of total glycosaminoglycan synthesis in beta-xyloside-treated cultures. Several observations suggest that the disruption of proteoglycan synthesis rather than the presence of large amounts of free glycosaminoglycan is responsible for the inhibition of branching morphogenesis. (a) We have been unable to inhibit branching activity by adding large amounts of chondroitin (dermatan) sulfate, extracted from beta-xyloside-treated cultures, to the medium of salivary rudiments undergoing morphogenesis. (b) In the range of 0.1-0.4 mM beta-xyloside, the dose-dependent inhibition of branching morphogenesis is directly correlated with the inhibition of proteoglycan synthesis. The stimulation of free glycosaminoglycan synthesis is independent of dose in this range, since stimulation is maximal even at the lowest concentration used, 0.1 mM. The data strongly suggest that the inhibition of branching morphogenesis is caused by the disruption of proteoglycan synthesis in beta-xyloside-treated salivary glands.


1985 ◽  
Vol 228 (3) ◽  
pp. 713-718 ◽  
Author(s):  
N G Morgan ◽  
G M Rumford ◽  
W Montague

Glucose (20 mM) and carbachol (1 mM) produced a rapid increase in [3H]inositol trisphosphate (InsP3) formation in isolated rat islets of Langerhans prelabelled with myo-[3H]inositol. The magnitude of the increase in InsP3 formation was similar when either agent was used alone and was additive when they were used together. In islets prelabelled with 45Ca2+ and treated with carbachol (1 mM), the rise in InsP3 correlated with a rapid, transient, release of 45Ca2+ from the cells, consistent with mobilization of 45Ca2+ from an intracellular pool. Under these conditions, however, insulin secretion was not increased. In contrast, islets prelabelled with 45Ca2+ and exposed to 20mM-glucose exhibited a delayed and decreased 45Ca2+ efflux, but released 7-8-fold more insulin than did those exposed to carbachol. Depletion of extracellular Ca2+ failed to modify the increase in InsP3 elicited by either glucose or carbachol, whereas it selectively inhibited the efflux of 45Ca2+ induced by glucose in preloaded islets. Under these conditions, however, glucose was still able to induce a small stimulation of the first phase of insulin secretion. These results demonstrate that polyphosphoinositide metabolism, Ca2+ mobilization and insulin release can all be dissociated in islet cells, and suggest that glucose and carbachol regulate these parameters by different mechanisms.


1983 ◽  
Vol 214 (1) ◽  
pp. 231-234 ◽  
Author(s):  
J M Stein ◽  
B R Martin

Adenylate cyclase activity in platelet membrane preparations was measured in the presence of prostaglandin E1 (PGE1), GTP and a non-hydrolysable analogue of GDP, guanosine 5′-[beta-thio]diphosphate (GDP[beta S]). A dose-dependent inhibition of adenylate cyclase by GDP[beta S] was observed that could be reversed either by adding increased amounts of GTP or of PGE1.


1987 ◽  
Vol 244 (3) ◽  
pp. 669-674 ◽  
Author(s):  
N G Morgan ◽  
G M Rumford ◽  
W Montague

1. The rate of 45Ca2+ efflux from prelabelled rat islets of Langerhans was stimulated by carbachol in a dose-dependent manner. 2. Significant stimulation occurred in the presence of 0.2 microM-carbachol; the response was half-maximal at 3-5 microM and was maximal at 20 microM. 3. Stimulation of 45Ca2+ efflux by carbachol was not dependent on the presence of extracellular Ca2+ and was enhanced in Ca2+-depleted medium. 4. Stimulation of 45Ca2+ efflux by 5 microM-carbachol occurred independently of any change in [3H]arachidonic acid release in prelabelled islets, and probably reflected generation of inositol trisphosphate in the cells. 5. The amphipathic peptide melittin failed to increase islet-cell 45Ca2+ efflux at a concentration of 1 microgram/ml, and caused only a modest increase at 10 micrograms/ml. 6. Despite its failure to increase 45Ca2+ efflux, melittin at 1 microgram/ml caused a marked enhancement of 3H release from islets that had been prelabelled with [3H]arachidonic acid. 7. The stimulation of 3H efflux caused by melittin correlated with a dose-dependent increase in the unesterified [3H]arachidonic acid content of prelabelled islets and with a corresponding decrease in the extent of labelling of islet phospholipids. 8. Combined addition of melittin (1 microgram/ml) and 5 microM-carbachol to perifused islets failed to augment 45Ca2+ efflux relative to that elicited by carbachol alone. 9. The data indicate that melittin promotes an increase in arachidonic acid availability in intact rat islets. They do not, however, support the proposal that this can either directly reproduce or subsequently modify the extent of intracellular Ca2+ mobilization induced by agents that cause an increase in inositol trisphosphate.


1980 ◽  
Vol 192 (1) ◽  
pp. 381-383 ◽  
Author(s):  
S L Howell ◽  
M Tyhurst

A DNAase-inhibition assay was used to determine the proportions of globular (G-) and filamentous (F-) actin in islets of Langerhans after incubation in various conditions, or after subcellular fractionation. Stimulation of insulin secretion resulted in an ATP-dependent increase in the proportion of F-actin present; fractionation showed 80-90% of the actin to be present in the final supernatant.


1979 ◽  
Vol 236 (5) ◽  
pp. E550
Author(s):  
D K Kasbekar ◽  
G S Gordon

The effects of colchicine and vinblastine on in vitro bullfrog gastric mucosal preparations were studied with respect to H+ and pepsinogen secretion. In the concentration range of 1--50 mM, an initial but transient colchicine-mediated stimulation of H+ secretion is followed by a dose-dependent inhibition. The transient stimulation of H+ secretion can be confirmed in resting preparations in the absence of added secretagogues. In the same concentration range, colchicine inhibits pepsinogen secretion to a greater degree than H+ secretion. Vinblastine (10(-5)--5 X 10(-4) M) was more effective than colchicine in inhibiting both H+ and pepsinogen secretion. The kinetics of inhibition of secretion by both colchicine and vinblastine were slow. Cytochalasin B had no effect on either secretion.


1989 ◽  
Vol 2 (2) ◽  
pp. 99-105
Author(s):  
R. D. Hurst ◽  
S. L. F. Chan ◽  
N. G. Morgan

ABSTRACT Insulin secretion from isolated rat islets of Langerhans in the presence of 4 mm glucose averaged 2·26 ± 0·20 (s.e.m.) ng/islet per 90 min and was significantly (P<0·001; n=30) increased to 3·28 ± 0·21 ng/islet per 90 min by the covalent α-adrenoceptor antagonist benextramine (10 μm). Glucose (20 mm) also increased the secretion rate (to 6·24 ± 6·0 ng/islet per 90 min) but, under these conditions, the response was not further enhanced by benextramine. Clonidine and noradrenaline (1 nm–10 μm) each caused dose-dependent inhibition of glucose-induced insulin secretion which was maximal at 1 μm. Benextramine, when added simultaneously with the agonist, relieved, in a dosedependent manner, the inhibition of secretion induced by either clonidine or noradrenaline with similar sensitivity. Even after a 30-min preincubation with benextramine the antagonist failed to differentiate between noradrenaline, adrenaline and clonidine with respect to inhibition of insulin secretion. In contrast to its effects on adrenergic responses, short-term treatment with benextramine did not significantly affect muscarinic—cholinergic receptor-mediated 45Ca2+ efflux from rat islets of Langerhans perifused in Ca2+-depleted medium. These data suggest that benextramine does not differentiate between clonidine and noradrenaline in rat islets of Langerhans but that it does show preference for α-adrenoceptors in this tissue.


Sign in / Sign up

Export Citation Format

Share Document