Immuno-enhancement and -inhibition of GH-releasing factor by site-directed anti peptide antibodies in vivo and in vitro

1995 ◽  
Vol 146 (3) ◽  
pp. 535-541 ◽  
Author(s):  
J M Pell ◽  
S James

Abstract It is now well established that specific antibodies and binding proteins can potentiate rather than inhibit hormone activity. In order to investigate this phenomenon further, the current study was undertaken using a hormone with a characterised structure, in terms of receptor binding, and for which activity has already been manipulated in specific ways (prolongation of half-life, increased receptor affinity) using synthetic hormone analogues. GH-releasing factor (GRF) is a 40 or 44 residue peptide and is, together with somatostatin, responsible for the regulation of GH secretion. The effects of site-directed anti peptide antibodies were determined on the activity of GRF in vivo and in vitro as GH release. The peptide regions of GRF were: 1–14 (part of putative receptor-binding region) and 31–44 and 35–44 (sites thought to be distant from the receptor-binding region). Five sheep were administered GRF (1 μg/kg), anti peptide immunoglobulin (Ig; a calculated tenfold excess binding to GRF dose), or GRF together with anti peptide Ig (preincubated for 1 h). GRF induced a significant increase in plasma GH concentration over the next 240 min, this was abolished when GRF was administered with anti 1–14 Ig (P<0·05) and augmented (P<0·05) when GRF was administered with anti 35–44 Ig; anti 31–44 had no effect on GRF activity. Anti 35–44 Ig alone induced an increase in GH secretion which was equivalent to that for GRF alone, implying that the antibody had interacted and potentiated with endogenous GRF. The Ig effects on exogenous GRF activity were confirmed for GH release in vitro using primary cultures of sheep pituitary cells, except that anti 31–44 Ig also augmented GH release (P<0·05) when co-administered with GRF. These data are compatible with current findings on the regulation of GRF activity, namely that increases in hormone activity may be achieved by at least two mechanisms: protection from degradation (decreased clearance rate) and changed hormone–receptor interaction. Journal of Endocrinology (1995) 146, 535–541

Endocrinology ◽  
2007 ◽  
Vol 148 (4) ◽  
pp. 1648-1653 ◽  
Author(s):  
Philippe Zizzari ◽  
Romaine Longchamps ◽  
Jacques Epelbaum ◽  
Marie Thérèse Bluet-Pajot

Administration of ghrelin, an endogenous ligand for the GH secretagogue receptor 1a (GHSR 1a), induces potent stimulating effects on GH secretion and food intake. However, more than 7 yr after its discovery, the role of endogenous ghrelin remains elusive. Recently, a second peptide, obestatin, also generated from proteolytic cleavage of preproghrelin has been identified. This peptide inhibits food intake and gastrointestinal motility but does not modify in vitro GH release from pituitary cells. In this study, we have reinvestigated obestatin functions by measuring plasma ghrelin and obestatin levels in a period of spontaneous feeding in ad libitum-fed and 24-h fasted mice. Whereas fasting resulted in elevated ghrelin levels, obestatin levels were significantly reduced. Exogenous obestatin per se did not modify food intake in fasted and fed mice. However, it inhibited ghrelin orexigenic effect that were evident in fed mice only. The effects of obestatin on GH secretion were monitored in superfused pituitary explants and in freely moving rats. Obestatin was only effective in vivo to inhibit ghrelin stimulation of GH levels. Finally, the relationship between octanoylated ghrelin, obestatin, and GH secretions was evaluated by iterative blood sampling every 20 min during 6 h in freely moving adult male rats. The half-life of exogenous obestatin (10 μg iv) in plasma was about 22 min. Plasma obestatin levels exhibited an ultradian pulsatility with a frequency slightly lower than octanoylated ghrelin and GH. Ghrelin and obestatin levels were not strictly correlated. In conclusion, these results show that obestatin, like ghrelin, is secreted in a pulsatile manner and that in some conditions; obestatin can modulate exogenous ghrelin action. It remains to be determined whether obestatin modulates endogenous ghrelin actions.


2004 ◽  
pp. 235-242 ◽  
Author(s):  
M Yan ◽  
M Hernandez ◽  
R Xu ◽  
C Chen

OBJECTIVE: Growth hormone (GH)-releasing hormone (GHRH) and GH-releasing peptides (GHRPs) stimulate the release of GH through their specific receptors on somatotropes. Combined GHRH and GHRP administration causes a synergistic GH release in vivo by an unknown mechanism. The current study focuses on the direct action of GHRH and GHRP on several molecular targets in somatotropes. DESIGN AND METHODS: To clarify the mechanism of action, ovine somatotropes were used to measure the expression of mRNAs encoding for GH, pituitary transcription factor-1 (Pit-1), GH-secretagogue receptor (GHS-R), GHRH-R, somatostatin receptor subtypes (sst-1 and sst-2) and GH release after GHRH and GHRP-2 treatment for 0.5, 1, 1.5 and 2 h. RESULTS: GHRH (10 nM), GHRP-2 (100 nM) and combined GHRH-GHRP-2 increased the levels of GH mRNA and GH release from 0.5 to 2 h in a time-dependent manner. The levels of Pit-1, GHRH-R and GHS-R mRNA were increased after 0.5 h treatment of cells with GHRH and GHRP-2. The levels of sst-1 but not sst-2 mRNA were significantly increased after 0.5 and 1 h of GHRH treatment. In contrast, both sst-1 and sst-2 mRNA expression was inhibited after 0.5-2 h of GHRP treatment. CONCLUSIONS: These data demonstrate a direct in vitro modification of ovine somatotropes by GHRH and GHRP-2 resulting in altered GHRH-R, GHS-R, Pit-1, sst-1, sst-2 and GH gene expression; this may underlie the regulatory action of GHRH and GHRP-2 on GH secretion.


1987 ◽  
Vol 116 (2) ◽  
pp. 165-171 ◽  
Author(s):  
Koji Nakagawa ◽  
Tatsuya Ishizuka ◽  
Takao Obara ◽  
Miyao Matsubara ◽  
Kazumasa Akikawa

Abstract. The mechanism of apparently discrepant actions of glucocorticoids (GC) on GH secretion, in vivo suppression and in vitro potentiation, was studied in rats. Dexamethasone (Dex), at the concentration of 50 nmol/l, Potentiated basal and GHRH-stimulated GH release from monolayer culture of normal rat pituitary cells in 48 h. On the other hand, in vivo administration of Dex, 165 μg daily for 3 days, consistently suppressed serum GH levels in female rats. In these rats, the hypothalamic content of immunoreactive (IR) SRIH was significantly increased, whereas that of IR-GHRH was significantly decreased in comparison with the untreated rats. Bioassayable GH-releasing activity was also lower in Dex-treated rats. These findings indicate that the suppressing effect of GC on GH release in vivo is, at least partially, due to the increase in hypothalamic SRIH release and probably also to the decrease in GHRH release, and these effects surpass the potentiating effect of GC on GH release at the pituitary level, resulting in a net inhibitory effect in vivo.


1987 ◽  
Vol 114 (4) ◽  
pp. 465-469 ◽  
Author(s):  
Gian Paolo Ceda ◽  
Robert G. Davis ◽  
Andrew R. Hoffman

Abstract. Glucocorticoids have been shown to have both stimulatory and suppressive effects on GH secretion in vitro and in vivo. In order to study the kinetics of glucocorticoid action on the somatotrope, cultured rat pituitary cells were exposed to dexamethasone for varying periods of time. During short-term incubations (≤ 4 h), dexamethasone inhibited GHRH and forskolin-elicited GH secretion, but during longer incubation periods, the glucocorticoid enhanced both basal and GHRH-stimulated GH release. The inhibitory effect of brief dexamethasone exposure was also seen in cells which previously had been exposed to dexamethasone. In addition, growth hormone secretion from cultured rat and human somatotropinoma cells was inhibited by a brief exposure to dexamethasone. Thus, the nature of glucocorticoid action on the isolated cultured somatotrope is biphasic, with brief exposure inhibiting, and more prolonged exposure stimulating GH secretion.


2003 ◽  
Vol 69 (4) ◽  
pp. 2230-2236 ◽  
Author(s):  
Silja Åvall-Jääskeläinen ◽  
Agneta Lindholm ◽  
Airi Palva

ABSTRACT Lactobacillus brevis is a promising lactic acid bacterium for use as a probiotic dietary adjunct and a vaccine vector. The N-terminal region of the S-layer protein (SlpA) of L. brevis ATCC 8287 was recently shown to mediate adhesion to various human cell lines in vitro. In this study, a surface display cassette was constructed on the basis of this SlpA receptor-binding domain, a proteinase spacer, and an autolysin anchor. The cassette was expressed under control of the nisA promoter in Lactococcus lactis NZ9000. Western blot assay of lactococcal cell wall extracts with anti-SlpA antibodies confirmed that the SlpA adhesion domain of the fusion protein was expressed and located within the cell wall layer. Whole-cell enzyme-linked immunosorbent assay and immunofluorescence microscopy verified that the SlpA adhesion-mediating region was accessible on the lactococcal cell surface. In vitro adhesion assays with the human intestinal epithelial cell line Intestine 407 indicated that the recombinant lactococcal cells had gained an ability to adhere to Intestine 407 cells significantly greater than that of wild-type L. lactis NZ9000. Serum inhibition assay further confirmed that adhesion of recombinant lactococci to Intestine 407 cells was indeed mediated by the N terminus-encoding part of the slpA gene. The ability of the receptor-binding region of SlpA to adhere to fibronectin was also confirmed with this lactococcal surface display system. These results show that, with the aid of the receptor-binding region of the L. brevis SlpA protein, the ability to adhere to gut epithelial cells can indeed be transferred to another, nonadhesive, lactic acid bacterium.


2003 ◽  
Vol 179 (1) ◽  
pp. 97-105 ◽  
Author(s):  
ML Baudet ◽  
S Harvey

Although avian and mammalian species differ significantly in their regulation of GH secretion, preliminary studies have demonstrated in vivo GH responses to ghrelin in chickens, as in mammals. However, the relative potency of ghrelin as a GH-releasing hormone (GHRH) in birds is uncertain, as is its site of action.The intravenous administration of human ghrelin to immature chickens promptly increased the circulating GH concentration (within 10 min), although this was transitory and was only maintained for 20 min. This GH response was dose-related with an EC50 of approximately 3.0 microg/kg, comparable with the reported potency of human GHRH in chickens. When incubated with dispersed pituitary cells, human ghrelin induced dose-dependent GH release over a range of 10(-6) to 10(-9) M, with an EC50 of 7.0 x 10(-8) M, comparable with that induced by human GHRH (EC50 6.0 x 10(-8) M), although it was less effective at doses of 10(-6) to 10(-8) M. This was due to direct effects on pituitary somatotrophs, since human ghrelin increased GH release (determined by the reverse hemolytic plaque assay) from individual pituitary cells. The incubation of these cells with human ghrelin induced a dose-dependent increase in the numbers of somatotrophs secreting GH and in the amount of GH released by each cell. In summary, these results demonstrated that ghrelin is a dose-related GH-releasing factor in chickens with a potency comparable with that induced by human GHRH. The GH-releasing action of ghrelin is due, at least in part, to stimulatory actions on the numbers of somatotrophs induced to release GH and upon the amount of GH released from individual somatotrophs.


1979 ◽  
Vol 82 (2) ◽  
pp. 193-197 ◽  
Author(s):  
S. HARVEY ◽  
C. G. SCANES ◽  
A. CHADWICK ◽  
G. BORDER ◽  
N. J. BOLTON

SUMMARY The effects of a chicken hypothalamic extract (HE) on the secretion of prolactin and growth hormone (GH) in vivo have been investigated by radioimmunoassay in the domestic fowl. Different i.v. doses of HE (0·25–25 HE equivalents/kg body weight) had no effect on GH secretion in conscious or anaesthetized cockerels. In both groups of birds the concentration of plasma prolactin was significantly increased within 10 min of administration of the extract. Extracts of other brain tissues (cerebral cortex, cerebellum and medulla oblongata) had no stimulatory effect on prolactin or GH secretion. Release of both prolactin and GH by dispersed pituitary cells and by hemipituitary glands in vitro was enhanced following incubation with HE (5 hypothalami equivalents/ml) or with single whole hypothalami respectively. Other brain tissues (cerebellum, optic lobes and medulla oblongata) had no effect on the concentration of prolactin or GH released by incubated hemipituitary glands.


2005 ◽  
Vol 185 (1) ◽  
pp. 165-172 ◽  
Author(s):  
C Suárez ◽  
J Vela ◽  
I García-Tornadú ◽  
D Becu-Villalobos

In view of the present controversy related to the potential beneficial effects of clinical dehydroepiandrosterone (DHEA) treatments, and considering our own previous results that reveal an influence of this steroid in pituitary hyperplasia development in vivo in rats, we decided to evaluate the role of DHEA in prolactin and GH secretion, as well as in second messengers involved, in cultured rat anterior pituitary cells. DHEA (1 × 10−5 to 1 × 10−7 M) did not modify basal GH or prolactin release, and a prolactin inhibitory effect was observed only for androstenediol, a metabolite of DHEA. DHEA partially prevented dopamine (1 × 10−6 M)-induced prolactin inhibition and facilitated the prolactin-releasing effect of 10−8 M Ang II, without modifying the resulting Ca2+i mobilization. Furthermore, DHEA potentiated the GH release and cAMP production induced by 1 × 10−8 M GHRH. Finally, DHEA partially reversed the inhibitory effect of 1 × 10−8 M somatostatin on GH, but not prolactin, release. We conclude that DHEA in vitro, directly or indirectly through conversion into metabolites, is able to modulate the hormonal response of the pituitary to hypothalamic regulators. It can enhance pituitary prolactin release and induce GH secretion. These effects could help explain some of the side effects observed in prolonged DHEA treatments in vivo and should be taken into account when considering its use in human clinical trials.


1997 ◽  
Vol 152 (1) ◽  
pp. 155-158 ◽  
Author(s):  
K Cheng ◽  
L Wei ◽  
L-Y Chaung ◽  
W W-S Chan ◽  
B Butler ◽  
...  

Abstract H2N,d-Arg,Pro,Lys,Pro,d-Phe,Gln,d-Trp,Phe,d-Trp,Leu, Leu,NH2 (L-756,867), a weak substance P antagonist, inhibited L-692,429-stimulated GH release from rat primary pituitary cells in a dose-dependent manner. At a concentration of 50 nm, L-756,867 shifted the dose–response curve of L-692,429-induced GH release to the right by about tenfold. It also impaired the ability of L-692,429 to potentiate the effect of growth hormone-releasing factor (GRF) on GH release. Substance P (1 μm) had no effect on basal or L-692,429-stimulated GH release. When tested in anesthetized rats, L-756,867 inhibited L-692,429- and growth hormone-releasing hexapeptide- (GHRP-6)-stimulated GH secretion in a dose-dependent manner. Complete inhibition was observed at an i.v. dose of 100 μg/kg of L-756,867. However, at the same concentration, it had no effect on GRF-induced GH secretion. d-Lys3-GHRP-6, a GHRP-6 antagonist, had no effect on GHRP-6 or L-692,429-induced GH secretion even at an i.v. dose of 2 mg/kg. These results indicate that L-692,429 and GHRP-6 stimulate GH release both in vitro and in vivo via a common receptor and signaling pathway which is different from that of substance P in spite of the fact that their effects are inhibited by a weak substance P antagonist. Journal of Endocrinology (1997) 152, 155–158


1989 ◽  
Vol 121 (1) ◽  
pp. 31-36 ◽  
Author(s):  
C. A. Edwards ◽  
C. Dieguez ◽  
M. F. Scanlon

ABSTRACT The aim of this study was to investigate the role of thyroid hormones and glucocorticoids on GH secretion. Secretion of GH in response to GH-releasing hormone (GHRH) (5 μg/kg) was markedly (P < 0·001) decreased in hypothyroid rats in vivo (peak GH responses to GHRH, 635 ± 88 μg/l in euthyroid rats vs 46 ±15 μg/l in hypothyroid rats). Following treatment with tri-iodothyronine (T3; 20 μg/day s.c. daily for 2 weeks) or cortisol (100 pg/day s.c. for 2 weeks) or T3 plus cortisol, a marked (P <0·01) increase in GH responses to GHRH was observed in hypothyroid rats (peak GH responses, 326 ±29 μg/l after T3 vs 133+19 μg/l after cortisol vs 283 ± 35 μg/l after cortisol plus T3). In contrast, none of these treatments modified GH responses to GHRH in euthyroid animals. Hypothyroidism was also associated with impaired GH responses to the GH secretagogue, Hisd-Trp-Ala-Trp-d-Phe-Lys-NH2 (GHRP-6). Secretion of GH in response to GHRP-6 in vivo was reduced (P <0·01) in hypothyroid rats (peak GH responses, 508 ± 177 μg/l in euthyroid rats vs 203 ± 15 μg/l in hypothyroid rats). In-vitro studies carried out using monolayer cultures of rat anterior pituitary cells derived from euthyroid and hypothyroid rats showed a marked impairment of somatotroph responsiveness to both GHRP-6 and somatostatin in cultures derived from hypothyroid rats. In summary, our data suggest that thyroid hormones and glucocorticoids influence GH secretion by modulating somatotroph responsiveness to different GH secretagogues. Journal of Endocrinology (1989) 121, 31–36


Sign in / Sign up

Export Citation Format

Share Document