The role of protein kinase C in GH secretion induced by GH-releasing factor and GH-releasing peptides in cultured ovine somatotrophs

1997 ◽  
Vol 154 (2) ◽  
pp. 219-230 ◽  
Author(s):  
D Wu ◽  
I J Clarke ◽  
C Chen

Abstract The involvement of protein kinase C (PKC) in the action of GH-releasing factor (GRF) and synthetic GH-releasing peptides (GHRP-2 and GHRP-6) was investigated in ovine somatotrophs in primary culture. In partially purified sheep somatotrophs, GRF and GHRP-2 caused translocation of PKC activity from the cytosol to the cell membranes and caused GH release in a dose- and time-dependent manner. GHRP-6 did not cause PKC translocation. The PKC inhibitors, calphostin C, staurosporine and chelerythrine, partially reduced GH release in response to GRF and GHRP-2 at doses which selectively inhibit PKC activity. These inhibitors totally abolished GH release caused by phorbol 12-myristate 13-acetate (PMA). Down-regulation of PKC by the treatment of cells with phorbol 12,13-dibutyrate for 16 h caused a significant (P<0·001) reduction in total PKC activity and totally abolished PKC translocation in response to a challenge with GRF, GHRP-2 or PMA. In addition, down-regulation abolished GH release in response to GRF, GHRP-2 or GHRP-6. Treatment of cells with H89, a selective PKA inhibitor, totally blocked GH release caused by either GRF or GHRP-2 and partially reduced PMA-induced GH release. H89 had no effect on PKC translocation caused by GRF, GHRP-2 or PMA and did not affect GH release caused by GHRP-6. These data suggest that GHRP-2 and GRF activate PKC in addition to stimulating adenylyl cyclase activity. Although the cAMP–protein kinase A (PKA) pathway is the major signalling pathway employed by GRF and GHRP-2, the activation of PKC may potentiate signalling via the cAMP–PKA pathway in ovine GH secretion. Importantly, the effect of PMA in increasing the secretion of GH from ovine somatotrophs is effected, in part, by up-regulation of the cAMP–PKA pathway. We conclude that there is cross-talk between the PKC pathway and the cAMP–PKA pathway in ovine somatotrophs during the action of GRF or GHRP. Journal of Endocrinology (1997) 154, 219–230

1993 ◽  
Vol 264 (4) ◽  
pp. H1300-H1306 ◽  
Author(s):  
Y. Shimamoto ◽  
H. Shimamoto ◽  
C. Y. Kwan ◽  
E. E. Daniel

We investigated effects of three kinds of putative protein kinase C (PKC) inhibitors, calphostin C, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7), and stauro-sporine, on aortic muscle contractions induced by KCl, phenylephrine, 12-O-tetradecanoylphorbol-13-acetate (TPA), and phorbol 12, 13-dibutyrate (PDBu). Calphostin C noncompetitively inhibited TPA-induced contractions in a concentration-dependent manner. At 10(-6) M, calphostin C completely abolished responses to TPA and also effectively inhibited PDBu-induced contractions. Such a concentration of calphostin C had no effect on KCl-induced contractions but decreased the maximal tension of phenylephrine-induced response curve by 35.3 +/- 6.6% H-7 (10(-5) M had little effect on TPA-induced contraction but significantly inhibited contractile responses to phenylephrine and KCl. Staurosporine (10(-8) M, 3 x 10(-8) M) inhibited contractile responses to KCl, phenylephrine, and TPA. We suggest that staurosporine and H-7, which are known to act on the catalytic domain of PKC carrying high degree of sequence homology with other protein kinases, are relatively nonselective for PKC. On the other hand, calphostin C acting on the regulatory domain of PKC, which is distinct from other protein kinases, may serve as a relatively more selective PKC inhibitor.


1995 ◽  
Vol 132 (1) ◽  
pp. 103-108 ◽  
Author(s):  
Carlo Foresta ◽  
Roberto Mioni ◽  
Paola Bordon ◽  
Francesco Gottardello ◽  
Andrea Nogara ◽  
...  

Foresta C, Mioni R, Bordon P, Gottardello F, Nogara A, Rossato M. Erythropoietin and testicular steroidogenesis: the role of second messengers. Eur J Endocrinol 1995;132:103–8. ISSN 0804–4643 It has been demonstrated that erythropoietin (EPO) influences rat and human Leydig cell steroidogenesis, stimulating testosterone production through a direct and specific receptor-mediated mechanism. The aim of this study was to investigate the mechanism by which recombinant human erythropoietin (rHuEPO) exerts its stimulatory effect on rat Leydig cells. Recombinant human EPO did not induce, at any dose tested (10−10 to 10−13 mol/l), an increase in either cAMP or cGMP, suggesting that in Leydig cells the effect of rHuEPO does not involve the adenylate or guanylate–cyclase systems. The role of transmembrane calcium flux in rHuEPO-stimulated steroidogenesis was studied by evaluating the effect of calcium channel blocker, verapamil, and by the 45Ca2+ uptake method. Verapamil did not influence rHuEPO-induced testosterone secretion and rHuEPO did not modify calcium recycling, indicating that calcium transmembrane flux is not involved in the rHuEPO effect. The protein kinase C inhibitor staurosporine (10, 30, 100 and 300 nmol/l) inhibited rHuEPO-stimulated testicular steroidogenesis in a dose-dependent manner. This indirect evidence suggests that the stimulatory effect of rHuEPO on rat Leydig cells may involve protein kinase C activation. Carlo Foresta, Institute of Internal Medicine, Via Ospedale Civile 105, 35128 Padova, Italy


1999 ◽  
Vol 72 (2) ◽  
pp. 585-593 ◽  
Author(s):  
Kenneth H. Kramer ◽  
Eric J. Simon ◽  
Eric J. Simon

FEBS Letters ◽  
1993 ◽  
Vol 328 (3) ◽  
pp. 280-284 ◽  
Author(s):  
Noriko Takeuchi ◽  
Eikichi Hashimoto ◽  
Toru Nakamura ◽  
Fumito Takeuchi ◽  
Kiyonao Sada ◽  
...  

1988 ◽  
Vol 116 (2) ◽  
pp. 231-239 ◽  
Author(s):  
M. S. Johnson ◽  
R. Mitchell ◽  
G. Fink

ABSTRACT We have investigated the role of protein kinase C (PKC) in LHRH-induced LH and FSH secretion and LHRH priming. Hemipituitary glands from pro-oestrous rats were incubated with agents known to affect PKC and with or without LHRH, during which time the secretion of gonadotrophins was measured. Phorbol esters and phospholipase C, activators of PKC, released LH and FSH in a concentration-dependent manner and potentiated the LHRH-induced secretion of gonadotrophins in parallel with their ability to release these hormones alone. Inhibitors of PKC had either no effect on LH release (1-(5-isoquinolinesulphonyl)-2-methylpiperazine hydrochloride) or they augmented LHRH-induced gonadotrophin release (polymyxin B and 8-(N,N-diethylamino) octyl-3,4,5-trimethoxybenzoate). Neither the activators nor the inhibitors of PKC, when present with LHRH, caused any change in LHRH priming, even though the activators alone produced a release of gonadotrophins that showed a temporal pattern similar to that produced by LHRH priming. The profiles of effects on LH and FSH secretion were always qualitatively similar. These results show that PKC may be involved in general regulation of gonadotrophin release but that it is not important in acute responses to LHRH nor in LHRH self-priming. J. Endocr. (1988) 116, 231–239


1987 ◽  
Vol 112 (2) ◽  
pp. 283-287 ◽  
Author(s):  
A. M. Lucas ◽  
A. J. Thody ◽  
S. Shuster

ABSTRACT The role of protein kinase C in melanosome dispersion was examined using the melanophores of the lizard Anolis carolinensis and an in-vitro rate method of bioassay. The phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA), which directly activates protein kinase C, was able to potentiate the melanophore response to α-MSH in a dose-dependent manner. Similarly, the stimulatory response to forskolin, which activates the adenylate cyclase catalytic subunit, was also potentiated by TPA. The response of the melanophore to cyclic AMP, however, remained unaltered by any dose of TPA. We thus propose that the potentiation of α-MSH potency by TPA is through an interaction of protein kinase C with adenylate cyclase and, more specifically, that this interaction may be at the level of the linkage of the nucleotide regulatory subunit Ns with the catalytic moiety C of adenylate cyclase. J. Endocr. (1987) 112, 283–287


Endocrinology ◽  
2000 ◽  
Vol 141 (10) ◽  
pp. 3611-3622 ◽  
Author(s):  
Kwai Wa Cheng ◽  
Elly S. W. Ngan ◽  
Sung Keun Kang ◽  
Billy K. C. Chow ◽  
Peter C. K. Leung

1997 ◽  
Vol 273 (4) ◽  
pp. L775-L781 ◽  
Author(s):  
Dorothee H. Bremerich ◽  
David O. Warner ◽  
Robert R. Lorenz ◽  
Robin Shumway ◽  
Keith A. Jones

Muscarinic receptor stimulation increases Ca2+ sensitivity, i.e., the amount of force produced at a constant submaximal cytosolic Ca2+ concentration ([Ca2+]i), in permeabilized smooth muscle preparations. It is controversial whether this increase in Ca2+sensitivity is in part mediated by protein kinase C (PKC). With the use of a β-escin permeabilized canine tracheal smooth muscle (CTSM) preparation, the effect of four putative PKC inhibitors {calphostin C, chelerythrine chloride, a pseudosubstrate inhibitor for PKC [PKC peptide-(19—31)], and staurosporine} on Ca2+sensitization induced by acetylcholine (ACh) plus GTP was determined. Preincubation with each of the inhibitors did not affect subsequent Ca2+ sensitization induced by muscarinic receptor stimulation in the presence of a constant submaximal [Ca2+]i, neither did any of these compounds reverse the increase in Ca2+ sensitivity induced by ACh plus GTP. Administration of a 1,2-diacylglycerol analog, 1-oleoyl-2-acetyl- sn-glycerol, did not induce Ca2+ sensitization at a constant submaximal [Ca2+]i. Thus we found no evidence that PKC mediates increases in Ca2+ sensitivity produced by muscarinic receptor stimulation in permeabilized CTSM.


Sign in / Sign up

Export Citation Format

Share Document