scholarly journals Binding characteristics of pro-insulin-like growth factor-II from cancer patients: binary and ternary complex formation with IGF binding proteins-1 to -6

2000 ◽  
Vol 165 (2) ◽  
pp. 253-260 ◽  
Author(s):  
JJ Bond ◽  
S Meka ◽  
RC Baxter

Many tumours secrete IGF-II in incompletely processed precursor forms. The ability of these pro-IGF-II forms to complex with the six IGF binding proteins (IGFBPs) is poorly understood. In this study, pro-IGF-II has been extracted from the serum and tumour tissue of two patients with non-islet cell tumour hypoglycaemia. These samples were used to study binary complex formation with IGFBPs-1 to -6 using competitive IGF-II binding assays and ternary complex formation with IGFBP-3 and IGFBP-5. In each case, IGFBPs-1 to -6 showed little difference in their ability to form binary complexes with recombinant IGF-II or tumour-derived pro-IGF-II forms, when the preparations were standardised according to IGF-II immunoreactivity. As previously described, ternary complex formation by acid-labile subunit (ALS) with IGFBP-3 and pro-IGF-II was greatly decreased compared with complex formation with mature IGF-II. In contrast, ALS bound similarly to IGFBP-5 in the presence of pro-IGF-II and mature IGF-II. These studies suggest that pro-IGF-II preferentially forms binary complexes with IGFBPs, and ternary complexes with IGFBP-5, rather than ternary complexes with IGFBP-3 as seen predominantly in normal serum. This may increase the tissue availability of serum pro-IGF-II, allowing its insulin-like potential to be realised.

1993 ◽  
Vol 294 (3) ◽  
pp. 847-852 ◽  
Author(s):  
R C Baxter ◽  
A M Suikkari ◽  
J L Martin

During pregnancy, insulin-like growth factor (IGF) binding protein-3 (IGFBP-3) undergoes proteolysis, rendering it undetectable by radioligand binding techniques. This study examines the physical and functional defect in pregnancy IGFBP-3. Ternary complex formation has been measured by the binding of the acid-labile subunit of the circulating IGFBP-3 complex, which also requires IGF-I or IGF-II binding. IGF-depleted pregnancy IGFBP-3, prepared by size-exclusion chromatography at low pH, could not form a ternary complex in the presence of [Tyr60]IGF-I or of an IGF-I analogue extensively altered in the A-domain, whereas analogues altered in the C- or D-domains complexed as well as native IGF-I. After purification by immunoaffinity chromatography, non-pregnancy and pregnancy IGFBP-3 formed ternary complexes with IGF-I equally well, although the pregnancy-proteolysed protein appeared degraded to approximately 30 kDa. On analysis by affinity labelling, cross-linked ternary complexes containing non-pregnancy or pregnancy IGFBP-3 were predominantly 135-140 kDa, with an additional complex of 110-115 kDa in the pregnancy preparation. After reverse-phase h.p.l.c., affinity-isolated pregnancy IGFBP-3 was inactive, whereas the protein from non-pregnancy serum retained activity. Thus pregnancy-proteolysed IGFBP-3 is altered in its specificity for IGF analogues, and is more labile than non-pregnancy IGFBP-3, but shows little impairment in normal IGF binding or ternary complex formation.


1990 ◽  
Vol 271 (3) ◽  
pp. 773-777 ◽  
Author(s):  
R C Baxter

The 140 kDa insulin-like growth factor (IGF)-binding protein complex in human serum consists of three subunits: an acid-labile, non-IGF-binding glycoprotein (alpha-subunit), an IGF-binding glycoprotein known as BP-53 or IGFBP-3 (beta-subunit), and IGF-I or IGF-II (gamma-subunit). This study investigates the regulation, by salt and glycosaminoglycans, of ternary (alpha-beta-gamma) complex formation, measured by incubating radioiodinated alpha-subunit with a mixture of IGF-I and IGFBP-3 and precipitating bound radioactivity with an anti-IGFBP-3 antiserum. Increasing NaCl concentrations progressively decreased ternary complex formation without any effect on binary (beta-gamma) complex formation. In 0.15 M-NaCl, the association constant for the ternary complex was 0.318 +/- 0.092 nM-1, 100-fold lower than that for the binary complex. Glycosaminoglycans also inhibited ternary complex formation without affecting the binary complex. Heparin [50% inhibition at 0.27 +/- 0.08 units/ml (1.5 +/- 0.4 micrograms/ml)] was more potent than heparan sulphate (50% inhibition at 15 +/- 7 micrograms/ml), with chondroitin sulphate even less potent. The inhibition by heparin was due principally to a decrease in binding affinity, from 0.604 +/- 0.125 to 0.151 +/- 0.024 nM-1 in the presence of 0.25 units of heparin/ml, with a slight decrease in the number of apparent binding sites from 1.05 +/- 0.08 to 0.85 +/- 0.15 mol of alpha-subunit bound/mol of beta-subunit. Since the ternary IGF-binding protein complex cannot cross the capillary barrier, it is proposed that a decrease in the affinity of the complex, mediated by circulating or cell-associated glycosaminoglycans, may be important in the passage of IGFs and IGFBP-3 to the tissues.


1995 ◽  
Vol 145 (3) ◽  
pp. 545-557 ◽  
Author(s):  
J M Carr ◽  
J A Owens ◽  
P A Grant ◽  
P E Walton ◽  
P C Owens ◽  
...  

Abstract The IGF-binding proteins (IGFBPs) are a family of at least six structurally related proteins, which bind the IGFs and modulate their actions, including the regulation of preand postnatal growth. In this study we have examined the relationship between circulating and tissue mRNA levels of IGFBPs and related this to circulating IGFs in the fetal sheep over the gestational period when rapid growth and development occurs. Circulating IGFBP-2, as measured by Western ligand blot (WLB), increases between early and mid gestation, remains high, then declines throughout late gestation (P=0·0002). Circulating IGFBP-3 increases throughout gestation, as measured by WLB or RIA (P=0·04 and P=0·0001 respectively), as does circulating IGFBP-4 (P=0·004). These ontogenic changes in circulating IGFBPs-2 and -4 are paralleled by changes in liver mRNA for these proteins and, for IGFBP-2, by those in kidney IGFBP-2 mRNA also. This suggests that liver and kidney may be the primary contributors to circulating IGFBP-2 and the liver to circulating IGFBP-4. IGFBP-2 mRNA is present in the heart and lung in early gestation but barely detectable in these tissues after approximately 60 days gestation. IGFBP-4 mRNA is also present in the heart in early but not late gestation, but is abundant in the lung throughout gestation. These results demonstrate tissue specific and developmental regulation of IGFBPs-2 and -4 at the mRNA level. To assess any role the circulating IGFs may play in mediating these changes in IGFBPs, or vice versa, both plasma IGF-I and IGF-II were measured by RIA. Circulating IGF-I increases as gestation progresses (P=0·0001), while circulating IGF-II increases between early and mid gestation, remains high (P=0·01), then declines. Circulating IGF-I is positively correlated with fetal weight (r=0·66, P=0·03), circulating IGFBP-3 (r=0·54, P=0·01) and IGFBP-4 (r=0·52, P=0·01). Circulating IGF-II positively correlates with circulating IGFBP-2 (r=0·48, P=0·02) throughout gestation and at 1 day postnatally. These relationships are consistent with circulating IGF-I influencing IGFBPs-3 and -4, and similarly, IGF-II determining IGFBP-2, or vice versa. Alternatively, these correlations may reflect coordinate regulation of IGF and IGFBP by a common factor. Journal of Endocrinology (1995) 145, 545–557


1997 ◽  
Vol 154 (2) ◽  
pp. 329-346 ◽  
Author(s):  
J P McCann ◽  
S C Loo ◽  
D L Aalseth ◽  
T Abribat

Abstract The effect of body condition per se on plasma IGFs and IGF-binding proteins (IGFBPs) and the whole-body metabolic responses to recombinant DNA-derived bovine GH (rbGH) in both the fed and the fasted state were determined in lean and dietary obese sheep (n=6/group). Sheep at zero-energy balance and equilibrium body weight were injected s.c. for 12 days with 100 μg/kg rbGH immediately before their morning feeding. Before GH treatment, fasting plasma concentrations of insulin (17·0 ± 1·9 vs 7·5 ± 0·7 μU/ml), IGF-I (345 ± 25 vs 248 ± 10 ng/ml), glucose (52·6 ± 1·1 vs 48·3 ± 0·7 mg/dl), and free fatty acid (FFA) (355 ± 45 vs 229 ± 24 nmol/ml) were greater (P<0·05) and those of GH (1·1 ± 0·2 vs 2·6 ± 0·3 ng/ml) were lower (P<0·05) in obese than in lean sheep. Fasting concentrations of IGF-II and glucagon were not affected (P>0·05) by obesity. GH concentrations were increased equivalently by 6–9 ng/ml in lean and obese sheep during GH treatment. GH caused an immediate and a marked fivefold increase in the fasting insulin level in obese sheep but only minimally affected insulin concentration in lean sheep. The increment in fasting glucose during GH treatment was greater (P<0·05) in obese (8–12 mg/dl) than in lean (2–5 mg/dl) sheep. Frequent measurements in the first 8 h after feeding and injection of excipient (day 0) or the first (day 1), sixth (day 6) and twelfth (day 12) daily injection of GH showed that prandial metabolism in both groups of sheep was affected minimally by GH. However, GH treatment on day 1 (not days 6 or 12) acutely attenuated the feeding-induced suppression of plasma FFA in both groups of sheep and this effect was significantly greater in obese than in lean sheep. Although obese sheep were hyposomatotropic, the basal and GH-induced increases in plasma IGF-I concentrations were greater (P<0·05) in obese than in lean sheep. Plasma IGF-II was unaffected by obesity and was not increased by GH stimulation. Western ligand blotting showed that IGFBP-3 accounted for approximately 50–60% of the plasma IGF-I binding capacity in sheep respectively both before and during GH treatment. Basal plasma levels of IGFBP-2 were lower (P<0·05) and those of IGFBP-3 greater (P<0·05) in obese compared with lean sheep. GH increased the level of IGFBP-3 equally in lean and obese sheep, but suppressed the expression of IGFBP-2 more (P<0·05) in lean than in obese sheep. We concluded that the diabetogenic-like actions of GH in sheep were exaggerated markedly by obesity, and were expressed more during the fasted than the fed states. The effects of GH stimulation on the endocrine pancreas may be selective for β-cells and preferentially enhanced by obesity. GH regulation of IGF-I and the IGFBPs differs in lean and obese sheep. Journal of Endocrinology (1997) 154, 329–346


Sign in / Sign up

Export Citation Format

Share Document