scholarly journals Mechanism of prostaglandin E2-stimulated heat shock protein 27 induction in osteoblast-like MC3T3-E1 cells

2002 ◽  
Vol 172 (2) ◽  
pp. 271-281 ◽  
Author(s):  
H Tokuda ◽  
O Kozawa ◽  
M Niwa ◽  
H Matsuno ◽  
K Kato ◽  
...  

We investigated the effect of prostaglandin E2 (PGE2) on the induction of heat shock protein 27 (HSP27) and HSP70, and the mechanism behind the induction in osteoblast-like MC3T3-E1 cells. PGE2 time-dependently increased the level of HSP27 without affecting the level of HSP70. PGE2 stimulated the accumulation of HSP27 dose-dependently in the range between 10 nM and 10 microM. PGE2 stimulated the increase in the level of the mRNA for HSP27. Staurosporine and calphostin C, inhibitors of protein kinase C (PKC), suppressed the PGE2-induced HSP27 accumulation. The effect of PGE2 on HSP27 accumulation was reduced in the PKC down-regulated cells. BAPTA/AM, a chelator of intracellular Ca2+, or TMB-8, an inhibitor of intracellular Ca2+ mobilization, reduced the accumulation of HSP27 induced by PGE2. Dibutyryl cAMP had little effect on the basal level of HSP27. PGE2 induced the phosphorylation of both p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase. PD98059 and U-0126, inhibitors of the upstream kinase of p44/p42 MAP kinase, reduced the accumulation of HSP27 induced by PGE2. SB203580, a specific inhibitor of p38 MAP kinase, suppressed the HSP27 accumulation induced by PGE2. U-73122, an inhibitor of phospholipase C, and calphostin C reduced the PGE2-induced phosphorylation of both p44/p42 MAP kinase and p38 MAP kinase. These results indicate that PGE2 stimulates the induction of HSP27 through PKC-dependent activations of both p44/p42 MAP kinase and p38 MAP kinase in osteoblasts.

1999 ◽  
Vol 277 (6) ◽  
pp. E1046-E1054 ◽  
Author(s):  
Hidenori Kawamura ◽  
Takanobu Otsuka ◽  
Hiroyuki Matsuno ◽  
Masayuki Niwa ◽  
Nobuo Matsui ◽  
...  

We previously reported that endothelin-1 (ET-1) activates p42/p44 mitogen-activated protein (MAP) kinase in osteoblast-like MC3T3-E1 cells and consequently induces synthesis of interleukin-6. In the present study, we investigated the effect of ET-1 on the induction of heat shock protein 27 (HSP 27) in MC3T3-E1 cells. ET-1 time and dose dependently stimulated HSP 27 accumulation. ET-1 induced an increase in the levels of mRNA for HSP 27. Both staurosporine and calphostin C, inhibitors of protein kinase C (PKC), suppressed the ET-1-induced HSP 27 accumulation. 12- O-tetradecanoylphorbol 13-acetate (TPA), a PKC activator, induced the HSP 27 accumulation and the expression of mRNA for HSP 27. The ET-1-stimulated HSP 27 accumulation was reduced in PKC-downregulated MC3T3-E1 cells. The HSP 27 accumulation by ET-1 was not suppressed by PD-98059, an inhibitor of the upstream kinase that activates p42/p44 MAP kinase. ET-1 or TPA induced the phosphorylation of p38 MAP kinase. SB-203580, an inhibitor of p38 MAP kinase, reduced the ET-1-stimulated HSP 27 accumulation. Calphostin C and U-73122, a phospholipase C inhibitor, suppressed the ET-1-induced phosphorylation of p38 MAP kinase. U-73122 and propranolol, a phosphatidic acid phosphohydrolase inhibitor, reduced the ET-1-stimulated HSP 27 accumulation. SB-203580 suppressed the ET-1-stimulated increase in the mRNA levels for HSP 27. These results strongly suggest that ET-1 stimulates HSP 27 induction in osteoblasts and that p38 MAP kinase activation is involved in the HSP 27 induction.


2000 ◽  
Vol 82 ◽  
pp. 143
Author(s):  
Hidenori Kawamura ◽  
Osamu Kozawa ◽  
Hiroyuki Matsuno ◽  
Masayuki Niwa ◽  
Takanobu Otsuka ◽  
...  

1997 ◽  
Vol 273 (5) ◽  
pp. L930-L940 ◽  
Author(s):  
Janice K. Larsen ◽  
Ilia A. Yamboliev ◽  
Lee A. Weber ◽  
William T. Gerthoffer

The 27-kDa heat shock protein (HSP27) is expressed in a variety of tissues in the absence of stress and is thought to regulate actin filament dynamics, possibly by a phosphorylation/dephosphorylation mechanism. HSP27 has also been suggested to be involved in contraction of intestinal smooth muscle. We have investigated phosphorylation of HSP27 in airway smooth muscle in response to the muscarinic agonist carbachol. Carbachol increased32P incorporation into canine tracheal HSP27 and induced a shift in the distribution of charge isoforms on two-dimensional gels to more acidic, phosphorylated forms. The canine HSP27 amino acid sequence includes three serine residues corresponding to sites in human HSP27 known to be phosphorylated by mitogen-activated protein kinase-activated protein (MAPKAP) kinase-2. To determine whether muscarinic receptors are coupled to a “stress response” pathway in smooth muscle culminating in phosphorylation of HSP27, we assayed MAPKAP kinase-2 activity and tyrosine phosphorylation of p38 mitogen-activated protein (MAP) kinase, the enzyme thought to activate MAPKAP kinase-2. Recombinant canine HSP27 expressed in Escherichia coli was a substrate for MAPKAP kinase-2 in vitro as well as a substrate for endogenous smooth muscle HSP27 kinase, which was activated by carbachol. Carbachol also increased tyrosine phosphorylation of p38 MAP kinase. SB-203580, an inhibitor of p38 MAP kinases, reduced activation of endogenous HSP27 kinase activity and blocked the shift in HSP27 charge isoforms to acidic forms. We suggest that HSP27 in airway smooth muscle, in addition to being a stress response protein, is phosphorylated by a receptor-initiated signaling cascade involving muscarinic receptors, tyrosine phosphorylation of p38 MAP kinase, and activation of MAPKAP kinase-2.


2003 ◽  
pp. 239-245 ◽  
Author(s):  
H Tokuda ◽  
M Niwa ◽  
H Ito ◽  
Y Oiso ◽  
K Kato ◽  
...  

OBJECTIVE: We have reported that endothelin-1 (ET-1) activates p38 mitogen-activated protein (MAP) kinase through protein kinase C in osteoblast-like MC3T3-E1 cells, and that p38 MAP kinase plays a role in the ET-1-induced heat shock protein 27 (HSP27). Recently, we found that stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) is activated by ET-1 in these cells. In the present study, we have investigated the involvement of SAPK/JNK in ET-1-induced HSP27 in MC3T3-E1 cells. METHODS: The concentration of HSP27 in soluble extracts of the cells, the expression of mRNA for HSP27, and the phosphorylation of SAPK/JNK were determined by an enzyme immunoassay, Northern blot analysis, and Western blot analysis respectively. RESULTS: SP600125, a specific inhibitor of SAPK/JNK, markedly reduced ET-1-stimulated HSP27 accumulation. The inhibitory effect of SP600125 was dose dependent in the range between 1 and 50 microM. SP600125 reduced the ET-1-increased level of HSP27 mRNA. Calphostin C and Go 6976, inhibitors of protein kinase C, reduced the ET-1-induced phosphorylation of SAPK/JNK. 12-O-Tetradecanoylphorbol-13-acetate, a direct activator of protein kinase C, induced SAPK/JNK phosphorylation, which was suppressed by SP600125. A combination of SP600125 and p38 MAP kinase inhibitor such as SB203580 and PD169316 additively reduced the ET-1-stimulated accumulation of HSP27. CONCLUSIONS: These results strongly suggest that JNK plays a part in ET-1-induced HSP27 in addition to p38 MAP kinase in osteoblasts.


2002 ◽  
Vol 87 (05) ◽  
pp. 888-898 ◽  
Author(s):  
Stefania Gaino ◽  
Valeria Zuliani ◽  
Rosa Tommasoli ◽  
Donatella Benati ◽  
Riccardo Ortolani ◽  
...  

SummaryWe investigated similarities in the signaling pathways elicited by the F2 isoprostane 8-iso-PGF2α and by low doses of U46619 to induce platelet activation. Both 0.01-0.1 µmol/L U46619 and 0.01-1 µmol/L 8-isoPGF2α triggered shape change and filopodia extension, as well as adhesion to immobilized fibrinogen of washed platelets. At these doses the two platelet agonists failed to trigger secretion and aggregation, which were however induced by higher doses of U46619 (0.1-1 µmol/L). SB203580 (1-10 µmol/L), a specific inhibitor of the p38 mitogen activated protein (MAP) kinase blunted platelet shape change and adhesion induced by 0.05-1 µmol/L 8-iso-PGF2α and by 0.01 µmol/L U46619. These platelet responses were also inhibited by 20 µmol/L cytochalasin D, an inhibitor of actin polymerization, and 50 µmol/L piceatannol, an inhibitor of the Syk tyrosine kinases. Both 8-iso-PGF2α and U46619-induced p38 MAP kinase phosphorylation in suspended platelets and this was inhibited by piceatannol, indicating that Syk activation occurs upstream p38 MAP kinase phosphorylation. These findings suggest that the signaling pathway triggered by both 8-iso-PGF2α and low concentrations of U46619 to induce platelet adhesion and shape change implicates Syk, the p38 MAP kinase, and actin polymerization.


2006 ◽  
Vol 291 (2) ◽  
pp. G178-G188 ◽  
Author(s):  
Kuljit Parhar ◽  
Kathy A. Baer ◽  
Kristy Parker ◽  
Mark J. Ropeleski

Although short-chain fatty acid (SCFA)-induced heat shock protein 25 (Hsp25) is associated with increased cellular resistance to injury, withdrawal of lumenal butyrate in vivo is associated with intestinal epithelial injury and apoptosis. Recognizing that SCFA-dependent posttranslational modification of Hsp25 may involve altered Hsp25 phosphorylation, we hypothesized that butyrate regulates Hsp25 phosphorylation and secondarily affects cellular responses to apoptosis-inducing agents. Intestinal epithelial crypt IEC-18 cells were treated with butyrate, propionate, or the histone deacetylase inhibitor trichostatin A for 6–24 h. Immunolocalization of Hsp25 was examined by confocal laser microscopy. Hsp25 phosphorylation was characterized using two-dimensional isoelectric focusing gel electrophoresis. Hsp25 accumulation in cytoskeletal- and mitochondrial-enriched fractions was examined by immunoblotting. The activation of p38 MAP kinase was determined using phospho-specific antibodies and MAPKAPK 2 kinase assays. The effects of SCFA on apoptosis were studied by ELISA detection of cleaved DNA and using antibodies recognizing cleaved caspase-3. Five-millimolar butyrate induced no significant injury to IEC-18 cells. Hsp25 did not accumulate in Triton X-100-insoluble cytoskeletal fractions with butyrate treatment but did localize to mitochondria in a p38 MAP kinase-dependent manner. Hsp25 phosphorylation was induced by butyrate, propionate, and trichostatin A. Butyrate-mediated changes in Hsp25 phosphorylation coincide with the activation of the p38 MAP kinase and MAPKAPK 2. Butyrate, propionate, and low-dose trichostatin A confer significant protection from camptothecin-induced apoptosis, which was not reversed by the p38 inhibitor SB203580. We conclude that butyrate-mediated phosphorylation of Hsp25 is associated with significant resistance to apoptosis, which appears to be independent of p38-mediated targeting of Hsp25 to mitochondria.


2001 ◽  
Vol 170 (3) ◽  
pp. 629-638 ◽  
Author(s):  
H Tokuda ◽  
O Kozawa ◽  
M Miwa ◽  
T Uematsu

We investigated the mechanism underlying vascular endothelial growth factor (VEGF) synthesis stimulated by prostaglandin E1 (PGE1) in osteoblast-like MC3T3-E1 cells. PGE1 induced the phosphorylation of both p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase. SB203580, a specific inhibitor of p38 MAP kinase, inhibited the PGE1-stimulated VEGF synthesis as well as PGE1-induced phosphorylation of p38 MAP kinase. PD98059, an inhibitor of the upstream kinase that activates p44/p42 MAP kinase, which reduced the PGE1-induced phosphorylation of p44/p42 MAP kinase, had little effect on the VEGF synthesis stimulated by PGE1. AH-6809, an antagonist of the subtypes of the PGE receptor, EP1 and EP2, or SC-19220, an antagonist of EP1 receptor, did not inhibit the PGE1-induced VEGF synthesis. H-89, an inhibitor of cAMP-dependent protein kinase, and SQ22536, an inhibitor of adenylate cyclase, reduced the VEGF synthesis induced by PGE1. Cholera toxin, an activator of G(s), and forskolin, an activator of adenylate cyclase, induced VEGF synthesis. SB203580 and PD169316, another specific inhibitor of p38 MAP kinase, reduced the cholera toxin-, forskolin- or 8bromo-cAMP-stimulated VEGF synthesis. However, PD98059 failed to affect the VEGF synthesis stimulated by cholera toxin, forskolin or 8-bromoadenosine-3',5'-cyclic monophosphate (8bromo-cAMP). SB203580 reduced the phosphorylation of p38 MAP kinase induced by forskolin or 8bromo-cAMP. These results strongly suggest that p44/p42 MAP kinase activation is not involved in the PGE1-stimulated VEGF synthesis in osteoblasts but that p38 MAP kinase activation is involved.


Sign in / Sign up

Export Citation Format

Share Document