Soil Reinforcement Loads in Geosynthetic Walls at Working Stress Conditions

2002 ◽  
Vol 9 (5-6) ◽  
pp. 525-566 ◽  
Author(s):  
T.M. Allen ◽  
R.J. Bathurst
2005 ◽  
Vol 42 (4) ◽  
pp. 1066-1085 ◽  
Author(s):  
Kianoosh Hatami ◽  
Richard J Bathurst

The paper describes a numerical model that was developed to simulate the response of three instrumented, full-scale, geosynthetic-reinforced soil walls under working stress conditions. The walls were constructed with a fascia column of solid modular concrete units and clean, uniform sand backfill on a rigid foundation. The soil reinforcement comprised different arrangements of a weak biaxial polypropylene geogrid reinforcement material. The properties of backfill material, the method of construction, the wall geometry, and the boundary conditions were otherwise nominally the same for each structure. The performance of the test walls up to the end of construction was simulated with the finite-difference-based Fast Lagrangian Analysis of Continua (FLAC) program. The paper describes FLAC program implementation, material properties, constitutive models for component materials, and predicted results for the model walls. The results predicted with the use of nonlinear elastic-plastic models for the backfill soil and reinforcement layers are shown to be in good agreement with measured toe boundary forces, vertical foundation pressures, facing displacements, connection loads, and reinforcement strains. Numerical results using a linear elastic-plastic model for the soil also gave good agreement with measured wall displacements and boundary toe forces but gave a poorer prediction of the distribution of strain in the reinforcement layers.Key words: numerical modelling, retaining walls, reinforced soil, geosynthetics, FLAC.


2003 ◽  
Vol 40 (5) ◽  
pp. 976-994 ◽  
Author(s):  
T M Allen ◽  
Richard J Bathurst ◽  
Robert D Holtz ◽  
D Walters ◽  
Wei F Lee

Proper estimation of soil reinforcement loads and strains is key to accurate internal stability design of reinforced soil structures. Current design methodologies use limit equilibrium concepts to estimate reinforcement loads for internal stability design of geosynthetic and steel reinforced soil walls. For geosynthetic walls, however, it appears that these methods are excessively conservative based on the performance of geosynthetic walls to date. This paper presents a new method, called the K-stiffness method, that is shown to give more accurate estimates of reinforcement loads, thereby reducing reinforcement quantities and improving the economy of geosynthetic walls. The paper is focused on the new method as it applies to geosynthetic walls constructed with granular (noncohesive, relatively low silt content) backfill soils. A database of 11 full-scale geosynthetic walls was used to develop the new design methodology based on working stress principles. The method considers the stiffness of the various wall components and their influence on reinforcement loads. Results of simple statistical analyses show that the current American Association of State Highway and Transportation Officials (AASHTO) Simplified Method results in an average ratio of measured to predicted loads (bias) of 0.45, with a coefficient of variation (COV) of 91%, whereas the proposed method results in an average bias of 0.99 and a COV of 36%. A principle objective of the method is to design the wall reinforcement so that the soil within the wall backfill is prevented from reaching a state of failure, consistent with the notion of working stress conditions. This concept represents a new approach for internal stability design of geosynthetic-reinforced soil walls because prevention of soil failure as a limit state is considered in addition to the current practice of preventing reinforcement rupture.Key words: geosynthetics, reinforcement, walls, loads, strains, design, K-stiffness method.


Sign in / Sign up

Export Citation Format

Share Document