A Lanthanide-Mercury Compound: Preparation and Photophysical Properties

2021 ◽  
Vol 10 (1) ◽  
pp. 1-6
Author(s):  
Wen-Tong Chen
2020 ◽  
Vol 44 (11-12) ◽  
pp. 727-732
Author(s):  
Wen-Tong Chen

A hydrothermal reaction leads to the formation of a novel erbium–mercury compound [Er(IA)3(H3O)(H2O)] n(0.5 nHg2I6) (1) (HIA = isonicotinic acid). The compound has been characterized by single-crystal X-ray diffraction. It is characteristic of a one-dimensional chain-like structure and a two-dimensional supramolecular layer. A solid-state photoluminescence experiment reveals that this compound displays upconversion green photoluminescence. The photoluminescence emission peaks can be attributed to the 4 G11/2 → 4 I15/2, 4 F7/2 → 4 I15/2, and 2 H11/2 → 4 I15/2 of the Er3+ ions. The energy transfer mechanism is consistent with the energy-level diagrams of the erbium ions and isonicotinic acid ligand. This compound possesses Commission Internationale de I'Éclairage chromaticity coordinates of 0.1755 and 0.5213. A solid-state diffuse reflectance measurement reveals that this compound features a narrow optical band gap of 1.97 eV.


2020 ◽  
Author(s):  
Masaki Saigo ◽  
Kiyoshi Miyata ◽  
Hajime Nakanotani ◽  
Chihaya Adachi ◽  
Ken Onda

We have investigated the solvent-dependence of structural changes along with intersystem crossing of a thermally activated delayed fluorescence (TADF) molecule, 3,4,5-tri(9H-carbazole-9-yl)benzonitrile (o-3CzBN), in toluene, tetrahydrofuran, and acetonitrile solutions using time-resolved infrared (TR-IR) spectroscopy and DFT calculations. We found that the geometries of the S1 and T1 states are very similar in all solvents though the photophysical properties mostly depend on the solvent. In addition, the time-dependent DFT calculations based on these geometries suggested that the thermally activated delayed fluorescence process of o-3CzBN is governed more by the higher-lying excited states than by the structural changes in the excited states.<br>


2020 ◽  
Author(s):  
Zeyu Liu ◽  
Shugui Hua ◽  
Tian Lu ◽  
Ziqi Tian

Inspired by a previous experimental study on the first-order hyperpolarizabilities of 1,3-thiazolium-5-thiolates mesoionic compounds using Hyper-Rayleigh scattering technique, we theoretically investigated the UV-Vis absorption spectra and every order polarizabilities of these mesoionic molecules. Based on the fact that the photophysical and nonlinear properties observed in the experiment can be perfectly replicated, our theoretical calculations explored the essential characteristics of the optical properties of the mesoionic compounds with different electron-donating groups at the level of electronic structures through various wave function analysis methods. The influence of the electron-donating ability of the donor on the optical properties of the molecules and the contribution of the mesoionic ring moiety to their optical nonlinearity are clarified, which have not been reported by any research so far. This work will help people understand the nature of optical properties of mesoionic-based molecules and provide guidance for the rational design of molecules with excellent photoelectric performance in the future.


Author(s):  
Aron Huckaba ◽  
sadig aghazada ◽  
iwan zimmermann ◽  
giulia grancini ◽  
natalia gasilova ◽  
...  

The straightforward synthesis and photophysical properties of a new series of heteroleptic Iridium (III) bis(2-arylimidazole) picolinate complexes is reported. Each complex has been characterized by NMR, UV-Vis, cyclic voltammetry, and the emissive properties of each is described. By systematically modifying first the cyclometallating aryl group on the arylimidazole ligand and then the picolinate ligand, the ramifications of ligand modification in these complexes was better understood through the construction of a structure-property relationship.


2017 ◽  
Author(s):  
Aron Huckaba ◽  
sadig aghazada ◽  
iwan zimmermann ◽  
giulia grancini ◽  
natalia gasilova ◽  
...  

The straightforward synthesis and photophysical properties of a new series of heteroleptic Iridium (III) bis(2-arylimidazole) picolinate complexes is reported. Each complex has been characterized by NMR, UV-Vis, cyclic voltammetry, and the emissive properties of each is described. By systematically modifying first the cyclometallating aryl group on the arylimidazole ligand and then the picolinate ligand, the ramifications of ligand modification in these complexes was better understood through the construction of a structure-property relationship.


2020 ◽  
Author(s):  
Matteo Tiecco ◽  
Irene Di Guida ◽  
Pier Luigi Gentili ◽  
Raimondo Germani ◽  
Carmela Bonaccorso ◽  
...  

<div><div><div><p>The structural features of a series of diverse Deep Eutectic Solvents (DESs) have been investigated and characterized by means of two fluorescent probes. The spectral and photophysical properties of the latter are strictly dependent on the experienced environment, so that they can provide insights into the polarity, viscosity, hydrogen-bond network, and micro-heterogeneity of the various DESs.</p><p>In fact, the investigated DESs exhibit a variety of properties with regards to their hydrophilicity, acidity, and hydrogen-bond ability, and these details were deeply probed by the two fluorescent molecules. The effect of the addition of water, which is a key strategy for tuning the properties of these structured systems, was also tested. In particular, the excited state dynamics of the probes, measured by femtosecond-resolved transient absorption, proved instrumental in understanding the changes in the structural properties of the DESs, namely reduced viscosity and enhanced heterogeneity, as the water percentage increases. Differences between the various DESs in terms of both local microheterogeneity and bulk viscosity also emerged from the peculiar multi-exponential solvation dynamics undergone by the excited states of the probes.</p></div></div></div>


2020 ◽  
Author(s):  
Matteo Tiecco ◽  
Irene Di Guida ◽  
Pier Luigi Gentili ◽  
Raimondo Germani ◽  
Carmela Bonaccorso ◽  
...  

<div><div><div><p>The structural features of a series of diverse Deep Eutectic Solvents (DESs) have been investigated and characterized by means of two fluorescent probes. The spectral and photophysical properties of the latter are strictly dependent on the experienced environment, so that they can provide insights into the polarity, viscosity, hydrogen-bond network, and micro-heterogeneity of the various DESs.</p><p>In fact, the investigated DESs exhibit a variety of properties with regards to their hydrophilicity, acidity, and hydrogen-bond ability, and these details were deeply probed by the two fluorescent molecules. The effect of the addition of water, which is a key strategy for tuning the properties of these structured systems, was also tested. In particular, the excited state dynamics of the probes, measured by femtosecond-resolved transient absorption, proved instrumental in understanding the changes in the structural properties of the DESs, namely reduced viscosity and enhanced heterogeneity, as the water percentage increases. Differences between the various DESs in terms of both local microheterogeneity and bulk viscosity also emerged from the peculiar multi-exponential solvation dynamics undergone by the excited states of the probes.</p></div></div></div>


2019 ◽  
Author(s):  
Chi-Yun Lin ◽  
Matthew Romei ◽  
Luke Oltrogge ◽  
Irimpan Mathews ◽  
Steven Boxer

Green fluorescent protein (GFPs) have become indispensable imaging and optogenetic tools. Their absorption and emission properties can be optimized for specific applications. Currently, no unified framework exists to comprehensively describe these photophysical properties, namely the absorption maxima, emission maxima, Stokes shifts, vibronic progressions, extinction coefficients, Stark tuning rates, and spontaneous emission rates, especially one that includes the effects of the protein environment. In this work, we study the correlations among these properties from systematically tuned GFP environmental mutants and chromophore variants. Correlation plots reveal monotonic trends, suggesting all these properties are governed by one underlying factor dependent on the chromophore's environment. By treating the anionic GFP chromophore as a mixed-valence compound existing as a superposition of two resonance forms, we argue that this underlying factor is defined as the difference in energy between the two forms, or the driving force, which is tuned by the environment. We then introduce a Marcus-Hush model with the bond length alternation vibrational mode, treating the GFP absorption band as an intervalence charge transfer band. This model explains all the observed strong correlations among photophysical properties; related subtopics are extensively discussed in Supporting Information. Finally, we demonstrate the model's predictive power by utilizing the additivity of the driving force. The model described here elucidates the role of the protein environment in modulating photophysical properties of the chromophore, providing insights and limitations for designing new GFPs with desired phenotypes. We argue this model should also be generally applicable to both biological and non-biological polymethine dyes.<br>


Sign in / Sign up

Export Citation Format

Share Document