Municipal Wastewater Treatment Using a Membrane Aerated Biofilm Reactor (MABR)

Author(s):  
Sandra Ukaigwe ◽  
Yun Zhou ◽  
Md Shaheen ◽  
Yang Liu
2020 ◽  
Vol 15 (2) ◽  
pp. 515-527
Author(s):  
L. Desa ◽  
P. Kängsepp ◽  
L. Quadri ◽  
G. Bellotti ◽  
K. Sørensen ◽  
...  

Abstract Many wastewater treatment plants (WWTP) in touristic areas struggle to achieve the effluent requirements due to seasonal variations in population. In alpine areas, the climate also determines a low wastewater temperature, which implies long sludge retention time (SRT) needed for the growth of nitrifying biomass in conventional activated sludge (CAS). Moreover, combined sewers generate high flow and dilution. The present study shows how the treatment efficiency of an existing CAS plant with tertiary treatment can be upgraded by adding a compact line in parallel, consisting of a Moving Bed Biofilm Reactor (MBBR)-coagulation-flocculation-disc filtration. This allows the treatment of influent variations in the MBBR and a constant flow supply to the activated sludge. The performance of the new 2-step process was comparable to that of the improved existing one. Regardless significant variations in flow (10,000–25,000 m3/d) and total suspended solids (TSS) (50–300 mg/L after primary treatment) the effluent quality fulfilled the discharge requirements. Based on yearly average effluent data, TSS were 11 mg/L, chemical oxygen demand (COD) 27 mg/L and total phosphorus (TP) 0.8 mg/L. After the upgrade, ammonium nitrogen (NH4-N) dropped from 4.9 mg/L to 1.3 mg/L and the chemical consumption for phosphorus removal was reduced.


2014 ◽  
Vol 8 (2) ◽  
pp. 66-75
Author(s):  
Inaam N. Ali ◽  
Hussein A. Sabtie ◽  
Khalid F. Hassan ◽  
Shaima F. ◽  
Amal H. Hmood ◽  
...  

Biofilm slime layer is one of the advanced biological treatment technologies for industrial and municipal wastewater treatment with the capacity to reuse of treated water for agricultural purposes. Bacterial, fungal and algal biofilm slime layer were grown on the interior surfaces of polyethylene pellet (carrier) and suspended in municipal wastewater for organic pollutants removal. Bacterial species (Pseudomonas aeruginosa, Bacillus megaterium, Sphingobacterium thalpophilum), fungal species (Penicillium citrinum, Aspergillus niger, Trichoderma harzianum) and algal species (Nostoc linckia, Scendesmus dimorphus) were used separately for biofilm slime layer growth under controlled laboratory conditions (pH, temperature, and aeration). Bacterial biofilm layer thickness was measured and recorded 9, 6 and 5 mm respectively as compared with 3mm for control group through the retention time of 16 day. Bacterial P. aeruginosa biofilm slime layer showed an efficiency for COD, TOC, NO3 and PO4 removal after 24 hour of 75%, 65%, 69% and56% respectively while the removal rates of the same factors using the fungal biofilm layer of P. citrinum was 83%, 78%, 53% and 60% after 48 hour respectively. The algal biofilm reactor with S. dimorphus showed the highest percentage removal rate of total nitrogen 93% as compared to control group 87% after 72 hours of treatment due to the biofilm slime thickness of S. dimorphus 7.5mm as compared to the thickness of the N. linckia slime layer 5.3mm. Mixture of microbial species biofilm layer was used for wastewater treatment through 18 and 24 hours, using aerobic and anoxia. The mixture of microbial species biofilm layer showed removal rates for TOC, COD, and TN of 90%, 83%, and 59% respectively in an aerobic condition, while the removal rates were 66%, 52%, and 84% in an anoxic condition. From the above results, one concludes that controlling the biofilm slim layer is a promising technology for municipal wastewater treatment, as long as it is used under the suitable conditions.


2010 ◽  
Vol 113-116 ◽  
pp. 904-907
Author(s):  
Ya Feng Li ◽  
Ying Hao ◽  
Jing Bo Yao ◽  
Ting Zhang

The experiment studies the phenomenon of simultaneous nitrification and denitrification (SND) in SBBR filled with polyurethane as micro-organisms immobilized carriers. Polyurethane fills in SBR as micro-organisms immobilized carriers, formation of a Sequencing Batch Biofilm Reactor (SBBR). Under the anaerobic/aerobic conditions, we studied the effects of C/P, C/N and DO on SND. The results showed that when COD was 400mg/L, C/P was 43.2~50.2, C/N was 9.41~11.9 of the influent, the concentration of DO was 3.31~4.01mg/L, the effect of TN removal was good. When C/P was 46.9, C/N was 10.3, the concentration of DO was 3.58mg/L, the removal rate of TN was 83.71%, TN effluent was 6.45mg/L. TN effluent followed byⅠA standard of “Discharge standard of pollutants for municipal wastewater treatment plant”. DO concentrations impact the forms of nitrogen in the effluent. C/P, C/N and DO play an important role on SND in SBBR filled with polyurethane. Controlling these factors effectively can inhance the effect of nitrogen removal.


Author(s):  
Li-Qiu Zhang ◽  
Xing Jiang ◽  
Hongwei Rong ◽  
Chun-Hai Wei ◽  
Min Luo ◽  
...  

As one stage process capable of simultaneous carbon and nitrogen removal, membrane aerated biofilm reactor (MABR) has advantages of low energy consumption from bubble-free aeration and no extra carbon dosage...


Sign in / Sign up

Export Citation Format

Share Document